Worlds Out of Nothing is the first book to provide a course on the history of geometry in the 19th century. Based on the latest historical research, the book is aimed primarily at undergraduate and graduate students in mathematics but will also appeal to the reader with a general interest in the history of mathematics. Emphasis is placed on understanding the historical significance of the new mathematics: Why was it done? How - if at all - was it appreciated? What new questions did it generate?
Author(s): Jeremy Gray
Series: Springer Undergraduate Mathematics Series
Edition: 1st
Publisher: Springer
Year: 2007
Language: English
Pages: 376
Cover......Page 1
Springer Undergraduate Mathematics Series......Page 2
Worlds Out of Nothing: A Course in the History of Geometry in the 19th Century......Page 4
Copyright - ISBN: 9781846286322......Page 5
Preface......Page 6
How to use this book......Page 10
Acknowledgements......Page 12
Contents......Page 14
List of Figures......Page 22
1.1 The French Revolution......Page 26
1.2 Some mathematicians......Page 29
1.2.1 Monge......Page 31
1.3 Descriptive geometry......Page 33
2.1 Poncelet reminisces......Page 36
2.2 Poncelet’s mathematics......Page 41
2.3 Poncelet, Traité des propriétés projectives......Page 43
2.3.1 Commentary......Page 46
2.4 Pole, polar, and duality......Page 47
3.1 The theorems of Pappus, Desargues and Pascal......Page 50
3.2 Some properties of some transformations......Page 60
3.3 Alternative treatment of cross-ratio and the fourth harmonic point......Page 64
3.3.1 Porismata......Page 65
4.1 Poncelet’s singular claims......Page 68
4.1.1 Meeting......Page 69
4.2 Cauchy responds......Page 72
4.3 Other responses......Page 76
4.4 Poncelet’s more conventional methods......Page 77
5.1 Pole and polar......Page 78
5.2 Gergonne versus Poncelet......Page 80
5.2.1 Curves of higher degree......Page 81
Properties of algebraic curves lying in a plane......Page 83
A correction......Page 84
6.1 What was done – differing opinions......Page 88
6.2 Institutions and careers......Page 91
6.3 Chasles......Page 92
6.4 What was done?......Page 94
6.5 Chasles, Steiner and cross-ratio......Page 95
6.6.1 Chasles on descriptive geometry......Page 98
6.6.2 Chasles on Monge and his school......Page 99
6.6.3 Chasles on Monge’s work......Page 100
6.7.1 The real projective plane......Page 101
6.7.2 Projective spaces......Page 103
7. Euclidean Geometry, the Parallel Postulate, and the Work of Lambert and Legendre......Page 104
7.1 Saccheri......Page 106
7.2 Lambert......Page 107
7.3 Legendre......Page 109
7.4 Lambert on the consequences of a non-Euclidean parallel postulate......Page 111
8.1 Gauss......Page 114
8.2 Schweikart and Taurinus......Page 116
8.3 What Gauss knew......Page 119
8.3.1 Gaussian curvature......Page 121
9.1 János and Wolfgang Bolyai......Page 124
9.2 János Bolyai’s new geometry......Page 127
9.3 János Bolyai’s section 32......Page 135
10.1 Lobachevskii and Kasan......Page 138
10.2 Lobachevskii’s new geometry......Page 141
10.2.1 Astronomical evidence......Page 143
10.3.1 Opening remarks......Page 144
10.3.2 Concluding remarks......Page 146
11.1 Minding’s surface......Page 148
11.2 The Bolyais read Lobachevskii......Page 149
11.3 Final years of János Bolyai......Page 150
11.4 Final years of Lobachevskii......Page 151
11.5 Gauss’s death, Gauss’s Nachlass......Page 153
12.1.1 Reading and writing the history of mathematics......Page 156
12.1.2 Practice questions......Page 160
12.2 References and footnotes......Page 164
12.3 An assignment on the first 12 chapters......Page 166
12.3.1 Advice......Page 167
13.1 Möbius’s Barycentric calculus......Page 168
13.1.1 Barycentric coordinates......Page 169
13.1.2 Projective transformations......Page 172
13.1.3 Duality......Page 174
13.1.4 Central projection from one plane to another......Page 175
13.2 A note on duality......Page 176
13.3 Möbius’s introduction of projective coordinates......Page 177
14.1 Higher plane curves......Page 180
14.2 Plücker’s resolution of the duality paradox......Page 182
14.3 Confirmation by others......Page 184
14.4 Plücker......Page 185
14.5 Hesse......Page 187
15.1 Singular points......Page 190
15.1.2 The non-singular quartic curve in the plane......Page 191
15.1.3 28 real bitangents......Page 194
16.1 Non-singular points and tangents......Page 196
16.2 Double points......Page 197
16.3 Homogeneous coordinates......Page 199
16.4.1 The first polars of a circle......Page 200
16.4.2 Inflection points......Page 201
16.5 Hessians......Page 202
16.6 Finding tangents with homogeneous coordinates......Page 205
16.7 References......Page 207
17.1 Complex by necessity......Page 208
17.1.2 The introduction of complex curves......Page 210
17.2 The introduction of complex points – the example of elliptic functions......Page 211
18.1 Riemann......Page 212
18.2 Riemann’s publications......Page 214
18.3 Riemann on geometry......Page 215
18.3.1 Surfaces......Page 216
18.4 Riemannian geometry......Page 218
18.5 From Riemann’s Habilitationsvortrag......Page 219
19.1 Basic techniques......Page 228
19.1.1 Geodetic projection......Page 229
19.2 Introducing Beltrami’s Saggio......Page 232
19.2.1 Beltrami’s Teoria of 1868......Page 234
The general setting......Page 236
Non-Euclidean geometry......Page 239
19.5 References......Page 242
20.1 Beltrami’s version......Page 244
20.2.1 Kant?......Page 246
20.3 Felix Klein......Page 247
20.3.2 . . . and beyond......Page 249
20.4 Klein’s Cayley metric......Page 250
20.5 Klein’s unification of geometry......Page 252
20.6 The Erlangen Program in the 1890s......Page 253
20.7 Weierstrass and Killing......Page 254
21.1 Assessment questions......Page 258
21.2.1 Cremona......Page 259
21.2.2 Salmon......Page 261
21.2.3 Lobachevskii’s account in 1840......Page 262
22.1 The rise of projective geometry......Page 264
22.2 Cremona......Page 266
22.2.1 Cremona’s projective geometry......Page 268
22.3 Salmon......Page 271
22.4 Anxiety – Pasch......Page 272
22.5 Helmholtz......Page 273
22.5.1 Free mobility......Page 275
23.1 Hilbert......Page 276
23.2 Hilbert and geometry......Page 278
23.2.1 The Grundlagen der Geometrie......Page 279
23.2.2 Desargues’ theorem......Page 280
23.3 Impact......Page 283
23.4 References......Page 284
24. The Foundations of Projective Geometry in Italy......Page 286
24.1 Peano and Segre......Page 287
24.2 Enriques......Page 290
24.3 Pieri......Page 293
in higher dimensions......Page 294
25.1 Poincaré......Page 298
25.1.1 A prize competition......Page 299
25.1.2 Poincaré’s discovery of non-Euclidean geometry......Page 300
25.1.3 The Poincaré and Beltrami discs......Page 302
25.2 Poincaré and Klein......Page 304
25.3 Circumcircles......Page 305
25.4 Inversion and the Poincaré disc......Page 306
25.4.1 Inversion......Page 307
25.5 References......Page 314
26.1 How to decide?......Page 316
26.2 Poincaré’s conventionalism......Page 317
26.2.1 Enriques disputes......Page 318
From “Space and geometry”, in Science and Hypothesis......Page 321
From “Experiment and geometry”, in Science and Hypothesis......Page 322
27. Summary: Geometry to 1900......Page 326
27.1 References......Page 328
28.1 Nagel’s thesis......Page 330
28.2 From Hilbert’s Grundlagen der Geometrie......Page 332
29.1 Geometry and physics......Page 338
29.2.1 The special theory of relativity......Page 339
29.2.2 The paradoxes of special relativity......Page 342
29.4 Einstein, gravity and the rotating disc......Page 343
29.5 From Einstein’s Relativity: The Special......Page 345
30.1 Truth......Page 350
30.1.1 Mathematical truths......Page 351
30.2 Proof......Page 352
30.2.1 Frege versus Hilbert......Page 353
30.3 Relative consistency......Page 354
From “Non-Euclidean geometries”, in Science and Hypothesis......Page 355
31.1 Assessment questions......Page 358
31.2 Advice on writing such essays......Page 359
31.3 How the essays will be graded......Page 360
A.1 Von Staudt......Page 362
A.1.1 Von Staudt’s Geometrie der Lage......Page 363
A.1.2 Klein’s response to von Staudt......Page 366
A.2 Non-orientability......Page 368
A.3 Axiomatics – independence......Page 371
Bibliography......Page 376
Some geometers......Page 394
Index......Page 396