Wireless Sensor Networks: A Networking Perspective

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Learn the fundamental concepts, major challenges, and effective solutions in wireless sensor networking

This book provides a comprehensive and systematic introduction to the fundamental concepts, major challenges, and effective solutions in wireless sensor networking (WSN). Distinguished from other books, it focuses on the networking aspects of WSNs and covers the most important networking issues, including network architecture design, medium access control, routing and data dissemination, node clustering, node localization, query processing, data aggregation, transport and quality of service, time synchronization, network security, and sensor network standards.

With contributions from internationally renowned researchers, Wireless Sensor Networks expertly strikes a balance between fundamental concepts and state-of-the-art technologies, providing readers with unprecedented insights into WSNs from a networking perspective. It is essential reading for a broad audience, including academic researchers, research engineers, and practitioners in industry. It is also suitable as a textbook or supplementary reading for electrical engineering, computer engineering, and computer science courses at the graduate level.

Author(s): Jun Zheng, Abbas Jamalipour
Publisher: Wiley-IEEE Press
Year: 2009

Language: English
Pages: 522

Wireless Sensor Networks A Networking Perspective (2009) (ATTiCA)......Page 6
CONTENTS......Page 10
Preface......Page 26
Acknowledgments......Page 28
About the Editors......Page 30
Contributors......Page 32
1.1 Overview of Wireless Sensor Networks......Page 34
1.1.1 Network Characteristics......Page 35
1.1.2.1 Environmental Monitoring......Page 36
1.1.2.3 Health Care Applications......Page 37
1.1.2.6 Home Intelligence......Page 38
1.1.3 Network Design Objectives......Page 39
1.1.4 Network Design Challenges......Page 40
1.2 Technological Background......Page 41
1.2.2 Wireless Communication Technology......Page 42
1.2.3 Hardware and Software Platforms......Page 43
1.2.3.2 Software Platforms......Page 44
1.2.4.1 The IEEE 802.15.4 Standard......Page 45
1.2.4.3 The IEEE 1451 Standard......Page 46
1.4 Organization of This Book......Page 48
References......Page 49
2.1 Introduction......Page 52
2.2.1 Sensor Node Structure......Page 53
2.2.2 Network Architectures......Page 54
2.2.2.2 Hierarchical Architecture......Page 55
2.3 Classifications of Wireless Sensor Networks......Page 57
2.4 Protocol Stack for Wireless Sensor Networks......Page 59
2.4.2 Transport Layer......Page 61
2.4.4 Data Link Layer......Page 62
2.4.5 Physical Layer......Page 63
References......Page 64
3.1 Introduction......Page 68
3.2.1 Contention-Based MAC Protocols......Page 69
3.2.2 Contention-Free MAC Protocols......Page 71
3.3.1 Network Characteristics......Page 72
3.3.2 Objectives of MAC Design......Page 73
3.3.3 Energy Efficiency in MAC Design......Page 74
3.4.1 Contention-Based Protocols......Page 75
3.4.1.1 S-MAC......Page 76
3.4.1.3 MS-MAC......Page 79
3.4.1.4 D-MAC......Page 80
3.4.1.5 Sift......Page 82
3.4.1.6 T-MAC......Page 83
3.4.1.7 WiseMAC......Page 84
3.4.1.8 CSMA Based MAC with Adaptive Rate Control......Page 85
3.4.2.1 Traffic-Adaptive Medium Access......Page 86
3.4.2.3 Distributed Energy-Aware MAC......Page 88
3.4.2.4 Implicit Prioritized MAC......Page 89
3.4.2.6 CDMA Sensor MAC......Page 90
3.4.3 Hybrid Protocols......Page 91
3.4.3.2 Z-MAC......Page 92
3.4.3.3 Funneling-MAC......Page 93
3.5 Summary and Future Directions......Page 94
References......Page 95
4.1 Introduction......Page 100
4.2.1.1 Terminology......Page 101
4.2.1.2 Energy Model......Page 103
4.2.2.2 Field Nature......Page 104
4.2.2.4 Sensing Application Requirements......Page 105
4.3 Taxonomy of Routing and Data Dissemination Protocols......Page 106
4.3.2 Network Layering and In-Network Processing......Page 107
4.3.4 Path Redundancy......Page 108
4.3.6 Quality of Service Requirements......Page 109
4.4 Overview of Routing and Data Dissemination Protocols......Page 110
4.4.1.1 Geographic Adaptive Fidelity......Page 111
4.4.1.2 Geographic and Energy-Aware Routing......Page 113
4.4.1.3 Coordination of Power Saving with Routing......Page 114
4.4.1.4 Trajectory-Based Forwarding......Page 115
4.4.1.6 Geographic Random Forwarding......Page 116
4.4.1.7 Minimum Energy Communication Network......Page 117
4.4.2 Layered and In-Network Processing-Based Protocols......Page 120
4.4.2.1 Low-Energy Adaptive Clustering Hierarchy......Page 121
4.4.2.2 Power-Efficient Gathering in Sensor Information Systems......Page 122
4.4.2.3 Threshold Sensitive Energy Efficient Sensor Network Protocol......Page 123
4.4.2.4 Adaptive Periodic TEEN......Page 125
4.4.3.1 Sensor Protocols for Information via Negotiation......Page 126
4.4.3.2 Directed Diffusion......Page 128
4.4.3.4 The Cougar Approach......Page 131
4.4.3.5 Active Query Forwarding......Page 133
4.4.3.6 Energy-Aware Data-Centric Routing......Page 134
4.4.3.7 Information-Directed Routing......Page 136
4.4.3.8 Quorum-Based Information Dissemination......Page 140
4.4.3.9 Home Agent-Based Information Dissemination......Page 141
4.4.4.1 Disjoint Paths......Page 142
4.4.4.3 N-to-1 Multipath Discovery......Page 143
4.4.5.1 Joint Mobility and Routing Protocol......Page 146
4.4.5.2 Data MULES Based Protocol......Page 147
4.4.5.3 Two-Tier Data Dissemination......Page 148
4.4.5.4 Scalable Energy-Efficient Asynchronous Dissemination......Page 150
4.4.5.5 Dynamic Proxy Tree-Based Data Dissemination......Page 154
4.4.6 QoS Based Protocols......Page 156
4.4.6.1 Trade-Off between Energy Savings and Delay......Page 157
4.4.6.2 Trade-Off between Energy Savings and Robustness......Page 158
4.4.6.3 Trade-Off between Traffic Overhead and Reliability......Page 160
4.4.7.1 Benefits of Heterogeneity in Wireless Sensor Networks......Page 162
4.4.7.2 Information-Driven Sensor Query......Page 164
4.4.7.3 Constrained Anisotropic Diffusion Routing......Page 165
4.4.7.4 Cluster-Head Relay Routing......Page 167
4.4.8 Comparisons......Page 169
4.5 Summary and Future Directions......Page 170
References......Page 172
5.1 Introduction......Page 178
5.2.1 Basic Concepts......Page 179
5.2.2 Design Guidelines and Challenges......Page 180
5.3.1.2 Probability-Based Broadcast......Page 182
5.3.2 Neighborhood-Aware Broadcasting Mechanisms......Page 183
5.3.2.2 Connected-Dominating-Set-Based Broadcasting Strategy......Page 184
5.3.2.3 Cluster-Based Broadcasting Strategy......Page 185
5.3.3.2 Geographic Adaptive Fidelity......Page 186
5.3.3.3 Grid-Based Routing Structure......Page 187
5.3.4.1 Broadcast Incremental Power......Page 189
5.3.4.3 Min-Hop Maximum Residual Energy Broadcast......Page 190
5.3.5 Reliable Broadcasting Mechanisms......Page 191
5.3.5.3 Integrated Round-Robin Reliable Unicast and Promiscuous Listening......Page 192
5.4 Multicasting Mechanisms......Page 193
5.4.1.1 Multicast-Enabled Ad Hoc On-Demand Distance Vector Routing......Page 194
5.4.2 Location-Based Multicasting Mechanisms......Page 195
5.4.2.3 Two-Tier Data Dissemination......Page 196
5.5.1.1 Unicast Routing with Area Delivery......Page 197
5.5.1.3 Performance Comparison......Page 198
5.5.2.3 Geocasting via Face Routing......Page 199
5.6 Summary and Future Directions......Page 200
Acknowledgments......Page 201
References......Page 202
6.1 Introduction......Page 206
6.1.1.1 Homogenous Sensor Networks......Page 207
6.1.1.3 Hybrid Sensor Networks......Page 209
6.1.2 Node Clustering Structures......Page 211
6.1.2.2 Randomly Distributed Nodes Deployment......Page 212
6.2 Node Clustering Algorithms......Page 213
6.2.1.1 Lowest ID Clustering Algorithm......Page 214
6.2.1.3 Least Cluster Change Algorithm......Page 215
6.2.2 Node Clustering Algorithms in Ad Hoc Networks......Page 216
6.2.2.1 Linked Cluster Algorithm......Page 217
6.2.2.2 Max–Min D-Clustering Algorithm......Page 218
6.2.2.3 Mobility-Based Clustering Algorithm......Page 220
6.3.1 Specialties for Clustering in Wireless Sensor Networks......Page 221
6.3.2 Passive Clustering for Efficient Flooding......Page 222
6.3.3 Energy-Efficient Adaptive Clustering......Page 226
6.3.4 Energy-Efficient Distributed Clustering......Page 228
6.3.5.1 Multitier Hierarchical Clustering......Page 229
6.3.5.2 Energy-Efficient Hierarchical Clustering......Page 230
6.3.5.3 Distributed Weight-Based Hierarchical Clustering......Page 232
6.3.6 Algorithm for Cluster Establishment......Page 234
6.3.7 Secure Clustering......Page 236
6.4 Summary and Future Directions......Page 241
References......Page 242
7.1 Introduction......Page 248
7.2.1 Query Characteristics......Page 250
7.2.1.2 Query Classification......Page 251
7.2.2 Challenges in Query Processing......Page 253
7.2.3 Sensor Selection for Query Processing......Page 254
7.2.4.1 Query Flooding......Page 255
7.2.5 Snapshot Querying......Page 258
7.2.5.1 Acquisitional Query Processing......Page 259
7.3.1 Challenges in Data Aggregation......Page 262
7.3.2.1 Energy-Efficient Data Aggregation......Page 263
7.3.2.2 Neural-Network-Based Data Aggregation......Page 265
7.3.2.3 Delay-Constrained Data Aggregation......Page 266
7.3.2.4 QoS Constrained Data Aggregation......Page 268
7.3.2.6 Structure-Free Data Aggregation......Page 270
7.4 Summary and Future Directions......Page 272
References......Page 273
8.1 Introduction......Page 276
8.2.1 Evolution of Localization Technologies......Page 277
8.2.2 Localization Systems......Page 278
8.2.3 Challenges of Node Localization in Wireless Sensor Networks......Page 280
8.3 Ranging Techniques for Wireless Sensor Networks......Page 281
8.3.1 TOA Based Ranging......Page 282
8.3.1.2 Ultra-Wideband Ranging......Page 286
8.3.2 RSS Based Ranging......Page 287
8.4 Wireless Localization Algorithms......Page 290
8.4.2 Geometrical Triangulation Techniques......Page 291
8.4.2.1 Least-Squares Algorithm......Page 292
8.4.2.2 Weighted Least-Squares Algorithm......Page 293
8.4.2.3 Practical Performance Considerations......Page 294
8.5 Wireless Sensor Node Localization......Page 295
8.5.1 Cooperative Localization......Page 296
8.5.2 Centralized Localization Algorithms......Page 300
8.5.3 Distributed Localization Algorithms......Page 302
8.5.3.1 Multihop Network Localization......Page 305
8.5.3.2 Recursive Position Estimation......Page 308
8.6 Summary and Future Directions......Page 312
References......Page 313
9.1 Introduction......Page 318
9.1.1 Computer Clocks and the Synchronization Problem......Page 319
9.1.2 Common Challenges for Synchronization Methods......Page 320
9.2 Need for Synchronization in Wireless Sensor Networks......Page 321
9.3 Requirements of Synchronization in Wireless Sensor Networks......Page 322
9.4.1.1 Two-Way Message Exchange......Page 323
9.4.1.2 Reference Broadcast Synchronization......Page 324
9.4.1.3 Tiny-Sync and Mini-Sync......Page 325
9.4.2.1 Multihop RBS......Page 328
9.4.2.2 Timing-Sync Protocol......Page 329
9.4.2.3 Lightweight Tree-Based Synchronization......Page 330
9.4.2.4 Flooding Time Synchronization Protocol......Page 331
9.4.3 Long-Term Synchronization......Page 332
9.4.3.2 Time-Diffusion Synchronization Protocol......Page 333
9.4.3.3 Rate Adaptive Time Synchronization......Page 334
9.4.4 Other Protocols and Relevant Work......Page 335
9.5 Summary and Future Directions......Page 336
References......Page 338
10.1 Introduction......Page 340
10.2.1 Power Consumption in Sensor Nodes......Page 341
10.2.2 Power Control at Different Protocol Layers......Page 344
10.2.3 Classification of Power Conservation Mechanisms for Wireless Sensor Networks......Page 346
10.3.1 Physical-Layer Power Conservation Mechanisms......Page 347
10.3.1.2 Dynamic Power Management......Page 348
10.3.1.4 Energy-Efficient System Partitioning......Page 350
10.3.2 MAC Layer Power Conservation Mechanisms......Page 351
10.3.3.1 Sensor-MAC......Page 353
10.3.3.2 Energy Efficiency Using Sleep Mode TDMA Scheduling......Page 354
10.3.3.3 SS-TDMA: A Self-Stabilizing MAC......Page 356
10.3.3.5 Energy-Latency Trade-Offs for Data Gathering......Page 357
10.3.3.7 Wave Scheduling......Page 358
10.3.3.9 Energy-Efficient Coordination for Topology Maintenance......Page 359
10.4.1.1 Multiple Access with Collision Avoidance......Page 360
10.4.1.4 Intelligent Medium Access with Busy Tone and Power Control......Page 361
10.4.1.5 Power Controlled Multiple Access......Page 362
10.4.1.6 Power Adaptation for Starvation Avoidance......Page 363
10.4.2 Network Layer Mechanisms......Page 364
10.4.2.2 Energy Aware Routing......Page 365
10.4.2.4 Cost-Effective Maximum Lifetime Routing......Page 366
10.4.2.5 Power-Aware Sensor Selection......Page 367
10.4.3.1 Experimental Study on TCP’s Energy Consumption......Page 368
10.4.3.3 Sensor Transmission Control Protocol......Page 369
References......Page 370
11.1 Introduction......Page 376
11.2.1 Principles of Traditional Transport Protocols......Page 379
11.2.2 Disadvantages of TCP and UDP......Page 380
11.3.1 Performance Metrics......Page 382
11.3.2.2 Congestion Notification......Page 384
11.3.2.3 Congestion Mitigation and Avoidance......Page 385
11.3.3.1 Loss Detection and Notification......Page 386
11.3.3.2 Retransmission Recovery......Page 387
11.3.4 Design Guidelines......Page 388
11.4.1 Protocols for Congestion Control......Page 389
11.4.1.4 Priority-Based Congestion Control Protocol......Page 391
11.4.1.6 Siphon......Page 392
11.4.2 Protocols for Reliability......Page 393
11.4.2.3 Pump Slowly Fetch Quickly......Page 395
11.4.3 Protocols for Congestion Control and Reliability......Page 396
11.4.3.2 Event-to-Sink Reliable Transport......Page 397
11.4.4 Open Problems......Page 398
References......Page 399
12.1 Introduction......Page 402
12.2 Confidentiality......Page 403
12.2.2 Node Compromise......Page 404
12.2.3 Encryption......Page 405
12.2.4 Privacy......Page 406
12.3.1 Transmission Errors......Page 407
12.3.4 Error Control......Page 408
12.4.2 Message Authentication Code......Page 409
12.4.5 Man-in-the-Middle......Page 410
12.4.6 Authenticating Public Key......Page 411
12.4.7 Broadcast and Multicast Authentication......Page 413
12.5 Nonrepudiation......Page 417
12.6.1 Packet Replaying......Page 418
12.7 Availability......Page 419
12.7.3 Multipath Routing......Page 420
12.7.4 False Reports......Page 421
12.7.5 Node Replication......Page 422
12.8 Intrusion Detection......Page 423
12.9.1 Symmetric Key Management......Page 424
12.9.1.1 Key Agreement Models......Page 425
12.9.1.2 Random Key Material Distribution......Page 426
12.9.1.3 Deterministic Key Material Distribution......Page 427
12.9.1.4 Location-Based Key Material Distribution......Page 428
12.9.1.5 Comparison of Symmetric Key Schemes......Page 429
12.9.2 Asymmetric Key Management......Page 431
12.9.3 Group Key Management......Page 432
References......Page 433
13.1 Introduction......Page 440
13.2 IEEE 802.15.4 Standard......Page 441
13.2.1 Overview of the MAC Layer......Page 442
13.2.2.1 Communications with a Superframe Structure......Page 443
13.2.3 Data-Transfer Models......Page 444
13.2.3.1 Data Transfers in Beacon-Enabled Networks......Page 445
13.2.3.2 Data Transfers in Nonbeacon-Enabled Networks......Page 446
13.2.4.1 Data Service......Page 447
13.2.4.2 Management Service......Page 448
13.2.5 Security......Page 450
13.3.1 Network Layer......Page 451
13.3.1.1 Network Formation......Page 452
13.3.1.2 Joining a Network......Page 453
13.3.1.3 Routing......Page 456
13.3.1.4 Route Discovery......Page 457
13.3.2.1 Application Framework......Page 459
13.3.2.2 Binding and Discovery Services......Page 460
13.3.2.3 Application Support Sublayer......Page 461
13.3.2.4 ZigBee Device Object......Page 462
13.4 Summary......Page 463
References......Page 464
14.1 Introduction......Page 466
14.2 Wireless Multimedia Sensor Networks......Page 467
14.2.1 Applications of Wireless Multimedia Sensor Networks......Page 469
14.2.2 Design of Wireless Multimedia Sensor Networks......Page 470
14.2.3 Ultra-Wideband Technology......Page 472
14.2.4 Cross-Layer Design......Page 474
14.3 Wireless Sensor and Actor Networks......Page 476
14.3.1 Applications of Wireless Sensor and Actor Networks......Page 477
14.3.2.1 Sensor–Actor Coordination......Page 478
14.3.2.2 Actor–Actor Coordination......Page 480
14.4.1 Underwater Acoustic Sensor Networks......Page 481
14.4.1.2 Factors Influencing the Design of Underwater Protocols......Page 483
14.4.1.3 Communication Architectures......Page 484
14.4.2 Wireless Underground Sensor Networks......Page 486
14.4.2.1 Experimental Setup......Page 487
14.4.2.5 Experimental Results......Page 488
14.5 Cross-Layer Design for Wireless Sensor Networks......Page 489
14.5.1 Cross-Layer Resource Allocation......Page 490
14.5.1.2 Joint Routing, Scheduling, and Power Control......Page 491
14.5.1.3 Joint Resource Allocation Based on Dual Decomposition......Page 492
14.5.2.1 Transport and PHY Interactions......Page 493
14.5.2.3 MAC and PHY Interactions......Page 494
14.5.2.4 MAC and Routing Interactions......Page 495
14.5.3 Cross-Layer Module Design......Page 496
14.5.4 Precautionary Guidelines and Open Research Problems......Page 497
References......Page 499
Index......Page 504