Author(s): Lingfeng Wang, Chanan Singh, Andrew Kusiak
Edition: 1st Edition.
Year: 2010
Language: English
Pages: 430
Cover
......Page 1
Preface......Page 6
Contents......Page 10
Optimal Allocation of Power-Electronic Interfaced Wind Turbines Using a Genetic Algorithm – Monte Carlo Hybrid Optimization Method......Page 12
Introduction......Page 13
Single Wind Power Model......Page 14
Cross-Correlation Model of Wind Power......Page 16
Bivariate-LARIMA Model for Wind Power Simulation......Page 17
Optimization Approaches......Page 21
Optimal Power Factor Setting of Wind Turbines......Page 22
Genetic Algorithm for Optimal Allocation of Wind Turbines......Page 24
Genetic Algorithm - Monte Carlo Hybrid Optimization Method......Page 25
System Description......Page 27
Results......Page 29
Discussions......Page 31
References......Page 33
Introduction......Page 36
WPG Model......Page 39
Load Flow Calculation......Page 41
Probabilistic Evaluation......Page 42
Objective Function......Page 43
System Constraints......Page 44
Chromosome Structure......Page 45
Crossover Operator......Page 46
Mutation Operator......Page 47
Numerical Results and Discussion......Page 48
References......Page 61
Global Optimization of Wind Farms Using Evolutive Algorithms......Page 64
Introduction......Page 65
A Brief Overview of Genetic Algorithms......Page 66
Problem Description......Page 67
Previous Approaches......Page 68
Using NPV as a Measure of Profitability......Page 69
Model of Initial Costs of a Wind Farm......Page 72
Annual Energy Generated by a Wind Farm......Page 74
Proposed Method......Page 78
Problem Approach......Page 84
Operator and Algorithm Specific Tools......Page 85
Global Planning of a Wind Farm......Page 94
Test Peformance and Benchmark Cases......Page 97
Results......Page 100
Conclusions......Page 110
References......Page 111
Introduction......Page 116
LOLE Evaluation and Wind Farm Modeling......Page 118
CBM Allocation......Page 120
Optimization Problem Formulation......Page 121
Method II: Minimization of LOLE Changes of Supporting Areas......Page 122
PSO Based Optimization......Page 123
Development of the Proposed Approach......Page 124
Numerical Results and Discussion......Page 127
CBM Evaluation of the Base Case (without WF)......Page 130
CBM Evaluation of MRTS Containing sWF......Page 131
Conclusion......Page 133
References......Page 134
Introduction......Page 136
Single-Objective Deterministic Dispatch......Page 138
Single-Objective Stochastic Dispatch......Page 139
Multi-objective Stochastic Dispatch......Page 141
Stochastic Characterizing of Uncertainty of Wind Power Output......Page 142
Multi-objective Optimization......Page 148
Multi-Objective Particle Swarm Optimization (MO-PSO)......Page 149
Example......Page 150
Single Objective Optimization......Page 151
Multi-objectives Optimization......Page 152
Conclusions......Page 158
References......Page 159
Wind Turbine Diagnostics Based on Power Curve Using Particle Swarm Optimization......Page 162
Introduction......Page 163
Evolution of Gaussian CDF Based IDCD for the First Turbine Type......Page 164
First Version of Gaussian CDF Based IDCD......Page 165
Second Version of Gaussian CDF Based IDCD......Page 167
Description of Particle Swarm Optimization (PSO)......Page 168
PSO Based Parameter Optimization for Power Curve Modelling......Page 169
Numerical Results on the Parameters......Page 170
Power Curve Test for Diagnostics Purpose......Page 171
Real Data Examples Using Power Curve Test......Page 173
Faulty Anemometer......Page 174
Conclusions......Page 175
References......Page 176
Introduction......Page 178
Model of Wind Turbine with DFIG......Page 180
Drive Train......Page 181
Pitch Control......Page 182
Rotor Side Converter......Page 183
Grid Side Converter......Page 184
Differential Evolution......Page 186
Multi-objective Optimization......Page 190
Constraint Handle Method......Page 192
Simulation and Results......Page 193
References......Page 198
Introduction......Page 202
Modeling of DFIG......Page 204
Drive Train......Page 205
Converter Model......Page 207
RSC Controllers......Page 208
GSC Controllers......Page 210
Bacteria Foraging for the Optimal Control Of DFIG System......Page 211
Simulation and Results......Page 215
Need of Damping Controller......Page 216
Optimal Tuning of DFIG Controllers......Page 221
Conclusion......Page 222
References......Page 223
An ANN-Based Power System Emergency Control Scheme in the Presence of High Wind Power Penetration......Page 226
Introduction......Page 227
Wind Power Penetration......Page 228
Impacts on Voltage Profile......Page 229
Impacts on System Frequency......Page 231
Contingency Analysis......Page 233
Proposed Intelligent Control Framework......Page 238
Voltage Stability Margin and P-V Curve......Page 241
ANN-1 to Determine Contingency Number......Page 246
ANN-2 to Estimate the P-V Curve......Page 249
ANN-1 and ANN-2 Configurations......Page 250
Load Shedding......Page 252
Simultaneous Using of Voltage and Frequency......Page 253
Proposed LS Algorithm......Page 255
Determine Amount of Cumulative Load That Should Be Shed......Page 257
Summary......Page 260
References......Page 261
Intelligent Control of Power Electronic Systems for Wind Turbines......Page 266
Introduction......Page 268
Computational Intelligence......Page 269
Nonlinear Adaptive Neuro-fuzzy Inference System......Page 271
Fuzzy Inference Systems......Page 272
Sugeno-type Fuzzy Inference System......Page 273
Adaptive Neuro-Fuzzy Inference System......Page 274
Wind Energy Conversion Systems (WECS)......Page 277
Generator Systems for Wind Turbines......Page 278
Power Electronic Solutions for Wind Power Generation......Page 280
DFIG with Back-to-Back PWM Converter......Page 281
Equivalent Circuit of DFIG......Page 282
Back-to-Back Converter Configuration......Page 283
Rotor-Side Converter (RSC) Control......Page 284
Grid-Side Converter (GSC) Control......Page 287
Unified Architecture of DFIG......Page 289
Unified Architecture Dynamic Model......Page 291
SGSC Control......Page 292
Design of ANFIS Controllers......Page 295
Simulation Results for DFIG......Page 297
Simulation Results for Unified Architecture......Page 300
Concluding Remarks......Page 303
References......Page 304
Intelligent Controller Design for a Remote Wind-Diesel Power System: Design and Dynamic Performance Analysis......Page 308
Introduction......Page 309
System Configuration......Page 310
Components Models......Page 311
Fuzzy-Robust Controller Design......Page 318
Fuzzy-Neural Hybrid Controller Design......Page 325
Evaluation by Simulation......Page 330
Fuzzy-Robust Controller......Page 331
Fuzzy-Neural Hybrid Controller......Page 341
References......Page 344
Introduction......Page 348
Control of Variable Speed Wind Turbines for Maximum Power Exploitation......Page 351
Voltage Control Capabilities Requirements for WECSs......Page 353
System Configuration......Page 354
Synchronous Generator Model......Page 355
Fuzzy Control of the Boost Converter for Maximum Wind Power Exploitation......Page 356
Inverter Fuzzy Control for Voltage Regulation......Page 358
Maximum Power Point Tracking Fuzzy Controller......Page 362
Network and WTs Description......Page 367
Maximum Power Point Tracking TSK Fuzzy Control Performances......Page 368
Network Voltage Variation and Voltage Control Capability of the System......Page 370
Implementation Issues and Future Work......Page 373
Conclusions......Page 374
References......Page 375
Application of TS-Fuzzy Controller for Active Power and DC Capacitor Voltage Control in DFIG-Based Wind Energy Conversion Systems......Page 378
Introduction......Page 379
Drive Train......Page 380
Generator......Page 381
Converter Model......Page 382
Rotor Side Converter (RSC) Controller......Page 383
Grid Side Converter (GSC) Controller......Page 384
Pitch Angle Controller......Page 385
Design of TS Fuzzy Controller for DFIG......Page 386
Simulation Results and Discussion......Page 388
Effect of TS Fuzzy Controller at Wind Speed 10m/s......Page 389
Effect of TS Fuzzy Controller at Wind Speed 14m/s......Page 391
References......Page 392
Introduction......Page 394
Wind Energy Capture Control......Page 396
Grid Interconnection......Page 397
Wind Turbine/Farm Fuzzy Control......Page 398
Real Performance Analysis of Two Different Wind Turbines......Page 399
Fuzzy Control and Adaptive Fuzzy Control......Page 400
Application of Fuzzy Controllers in Wind Systems......Page 402
Forecasting Analysis......Page 412
Conclusions......Page 414
References......Page 415
Introduction......Page 418
Impacts of Wind Power Generation on the Power System Frequency and Frequency Regulation......Page 420
Wind Generation Technologies......Page 421
System Response Analysis......Page 423
Generalized Area Frequency Response Model......Page 427
The Need for Revising of Frequency Performance Standards......Page 429
A Background on Agent Based RL......Page 430
Single-Agent RL......Page 431
Multi-agent RL......Page 432
The Proposed Intelligent Control Framework......Page 433
Controller Agent......Page 434
Application to the 3-Control Area Test System......Page 436
Simulation Results......Page 437
References......Page 440
Author Index
......Page 449