Wildland Fire Smoke in the United States: A Scientific Assessment

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This open access book synthesizes current information on wildland fire smoke in the United States, providing a scientific foundation for addressing the production of smoke from wildland fires. This will be increasingly critical as smoke exposure and degraded air quality are expected to increase in extent and severity in a warmer climate. Accurate smoke information is a foundation for helping individuals and communities to effectively mitigate potential smoke impacts from wildfires and prescribed fires. The book documents our current understanding of smoke science for (1) primary physical, chemical, and biological issues related to wildfire and prescribed fire, (2) key social issues, including human health and economic impacts, and (3) current and anticipated management and regulatory issues. Each chapter provides a summary of priorities for future research that provide a roadmap for developing scientific information that can improve smoke and fire management over the next decade.

Author(s): David L. Peterson, Sarah M. McCaffrey, Toral Patel-Weynand
Publisher: Springer
Year: 2022

Language: English
Pages: 345
City: Cham

Foreword
Acknowledgments
Disclaimer
Contents
1 Assessing the State of Smoke Science
1.1 Recent Trends
1.2 Environmental and Social Context
1.3 Overview of This Assessment
References
2 Fuels and Consumption
2.1 Introduction
2.1.1 Understanding How Fuels Contribute to Smoke
2.2 Wildland Fuels
2.2.1 Fuel Characteristics
2.2.2 Traditional Methods to Estimate Wildland Fuel Loadings
2.2.3 Emerging Technologies and Methods
2.3 Fuel Consumption
2.3.1 Indirect Estimates of Fuel Consumption
2.3.2 Direct Measures of Fuel Consumption
2.4 Gaps in Wildland Fuels Characterization
2.4.1 Scaling from Fine-Scale to Coarse-Scale Fuel Characterization
2.4.2 Challenges in Forest Floor Characterization
2.4.3 Modeling Spatial and Temporal Dynamics of Wildland Fuels
2.5 Vision for Improving Fuel Science in Support of Smoke Science
2.6 Science Delivery to Managers
2.7 Research Needs
2.8 Conclusions
References
3 Fire Behavior and Heat Release as Source Conditions for Smoke Modeling
3.1 Introduction
3.2 Current State of Science
3.2.1 Representing Fire in Smoke Models
3.2.2 Remote Sensing
3.2.3 Effects of Management Actions
3.3 Gaps in Understanding the Link Between Fire Behavior and Plume Dynamics
3.3.1 Heat Release
3.3.2 Fire Spread
3.3.3 Plume Cores
3.4 Vision for Improving Smoke Science
3.5 Emerging Issues and Challenges
3.5.1 Magnitude of Fire and Smoke Impacts
3.5.2 Managing Fuels to Minimize Air Quality Impacts
3.5.3 Need for Dispersion Climatologies
3.5.4 When and Where is Coupled Fire–Atmosphere Modeling Needed?
3.6 Conclusions
3.7 Key Findings
3.8 Key Information Needs
References
4 Smoke Plume Dynamics
4.1 Introduction
4.1.1 Scientific Significance
4.1.2 Management Significance
4.2 Current State of Science
4.2.1 Theoretical Framework
4.2.2 Smoke Measurements
4.2.3 Smoke Plume Modeling
4.2.4 Interactive Processes
4.2.5 Smoke Decision Support Systems
4.3 Gaps in Understanding Plume Dynamics
4.3.1 Measurements
4.3.2 Plume Rise
4.3.3 Dispersion and Transport Modeling
4.3.4 Nighttime Smoke
4.3.5 Physics-Based Fire Models
4.3.6 Smoke Management for Prescribed Fires
4.4 Vision for Improving Plume Dynamics Science
4.4.1 New Research on Observational and Computational Capabilities
4.4.2 New Approaches and Tools
4.4.3 New Projects
4.4.4 Recent Policies and Integration with Smoke Impacts Research
4.5 Emerging Issues and Challenges
4.5.1 Coupled Modeling Systems
4.5.2 Improving Modeling Tools with Field Campaign Data
4.5.3 Real-Time Smoke Transport Modeling and Prediction
4.5.4 Smoke from Duff Burning Under Drought Conditions
4.5.5 Smoke Plume Dynamics and Climate Change
4.5.6 Smoke Dynamics in the Earth System
4.6 Conclusions
4.7 Key Findings
References
5 Emissions
5.1 Introduction
5.2 Current State of the Science
5.2.1 Fuel Properties, Combustion Processes, and Emissions
5.2.2 Smoke Composition and Emission Factors
5.2.3 Emission Calculations
5.3 Existing Data, Tools, Models, and Other Technology
5.3.1 Emission Factors
5.3.2 Emission Inventories
5.3.3 Emission Models for Land Management
5.4 Gaps in Data, Understanding, and Tools/Technology
5.4.1 Emission Factors for Wildfires
5.4.2 Connecting Laboratory Studies with Field Observations
5.4.3 Variability of EFs with Combustion Conditions
5.4.4 Validation of Emission Inventories
5.4.5 Forecasting Wildfire Emissions
5.4.6 Measuring and Modeling PM2.5
5.4.7 Emissions of Hazardous Air Pollutants
5.4.8 Emissions from Structure Fires
5.5 Conclusions
References
6 Smoke Chemistry
6.1 Introduction
6.1.1 Overview and Context of the Issues
6.1.2 Need for Decision Support
6.1.3 Scientific Challenges
6.2 Current State of the Science
6.2.1 Well-Understood Aspects of Smoke Chemistry
6.2.2 Existing Data, Tools, Models, and Other Technology
6.3 Gaps in Data, Understanding, and Tools/Technology
6.3.1 Ozone Data Gaps
6.3.2 Secondary Organic Aerosol Data Gaps
6.3.3 Model Gaps
6.4 Vision for Improving Our Understanding of Smoke Chemistry
6.4.1 Near-Term Opportunities
6.4.2 Long-Term Priorities for Improving Smoke Chemistry Knowledge
6.5 Emerging Issues
6.5.1 Higher Particulate Matter, Ozone, and Hazardous Air Pollutants from Fires in Western States
6.5.2 How Prescribed Burning Affects Smoke Chemistry
6.5.3 Clarifying Specific Health Effects
6.6 Links with Other Components of the Smoke Assessment
6.6.1 Fire Behavior and Plume Dynamics
6.6.2 Fuel Characterization
6.6.3 Smoke Emissions
6.6.4 Effects on People, Health, Transportation, and Commerce
6.7 Conclusions
6.7.1 Key Research Needs and Priorities
6.7.2 Opportunities for Shared Stewardship to Improve Smoke Science and Management
References
7 Social Considerations: Health, Economics, and Risk Communication
7.1 Introduction
7.2 Health Effects Attributed to Wildland Fire Smoke
7.2.1 Wildland Fire Smoke Exposure
7.2.2 Epidemiologic Evidence—Wildfire Smoke and PM2.5
7.2.3 Other Smoke Pollutants Associated with Health Risks
7.2.4 Occupational/Cumulative and Chronic Exposures
7.3 Economic Costs and Losses from Smoke
7.3.1 Theoretical Costs and Losses
7.3.2 Health Costs and Losses
7.3.3 Evacuation as an Averting Behavior
7.3.4 Displaced Recreation and Tourism
7.4 Social Acceptance and Risk Communication
7.4.1 Social Acceptability
7.4.2 Risk Communication
7.5 Key Findings
7.6 Key Information Needs
7.6.1 Understudied Health Effects
7.6.2 Health Benefits and Trade-Offs of Public Health Interventions
7.6.3 Economic Impacts
7.6.4 Central Repository of Standards and Actions
7.7 Conclusions
References
8 Resource Manager Perspectives on the Need for Smoke Science
8.1 Introduction
8.2 Managing Wildland Fire to Improve Ecosystem Conditions While Minimizing Smoke Impacts
8.2.1 Smoke Concerns and Barriers to Prescribed Fire
8.2.2 Applying Prescribed Fire Across Large Landscapes
8.2.3 Utilizing Wildfires and Natural Ignitions
8.2.4 Implications of Wildfire Response Actions and Suppression for Air Quality
8.2.5 Alternatives to Burning—Evaluating Emissions Reduction
8.2.6 Effects of Fuel Moisture on Emissions and Dispersion
8.2.7 Fuel Type, Fuel Loading, and Fuel Consumption
8.2.8 Techniques for Minimizing Smoke Impacts
8.2.9 Components of Wildland Fire Smoke
8.2.10 Soils and Emissions
8.2.11 Remote Sensing and Data for Fuels, Fire, and Smoke
8.2.12 Prescribed Fire Tracking Data
8.2.13 Fire Emissions and the National Emissions Inventory
8.3 Wildland Fire and Smoke Decision Tools
8.3.1 Multiple Fires and Airshed Analysis
8.3.2 Fire Growth Models and Smoke Dispersion
8.3.3 Background Air Quality Conditions
8.3.4 Smoke Models for Fire Planning
8.3.5 Use of Air Quality Measurements
8.3.6 Air Quality Impacts of Prescribed Fire Versus Wildfire
8.3.7 Smoke Model Performance and Accuracy
8.3.8 Long-Range Forecasts and Projections for Planning and Early Warning
8.3.9 Tools and Data Needs for the Future
8.3.10 Identifying Areas at High Risk from Wildfire and Smoke
8.4 Health, Safety, and Societal Impacts of Smoke
8.4.1 What is a Smoke-Affected Day?
8.4.2 Effects of Smoke Exposure on Human Health for Different Exposure Scenarios
8.4.3 Health Effects of Constituents of Smoke Beyond Particulate Matter
8.4.4 Smoke and Mental Health
8.4.5 Smoke and Visibility Reduction on Roadways
8.4.6 Visibility Conditions in Class I Areas
8.5 Outreach and Messaging About Smoke
8.5.1 Smoke Ready Interventions
8.5.2 Air Quality Conditions and Advisories
8.5.3 National Weather Service
8.5.4 Interagency Wildland Fire Air Quality Response Program and Air Resource Advisors
8.6 Transfer of Smoke and Air Quality Science and Tools to Managers
8.6.1 Formal Fire and Smoke Training Opportunities
8.6.2 Informal Training and Collaboration Opportunities
8.6.3 Websites, Webinars, Etc.
8.6.4 Learning Pathways
8.6.5 Maintaining Contact
8.7 Managing Smoke in a Changing Environment
References
Appendix A Regional Perspectives on Smoke Issues and Management
Alaska Region
Ecological and Social Context
Prescribed Fire and Smoke
Smoke Research Needs and Scientific Efforts Applicable to the Region
Eastern Region
Ecological and Social Context
Prescribed Fire and Smoke
Smoke Research Needs and Scientific Efforts Applicable to the Region
Intermountain Region
Ecological and Social Context
Prescribed Fire and Smoke
Smoke Research Needs and Scientific Efforts Applicable to the Region
Northern Region
Ecological and Social Context
Prescribed Fire and Smoke
Smoke Research Needs and Current Efforts Applicable to the Region
Pacific Northwest Region
Ecological and Social Context
Prescribed Fire and Smoke
Smoke Research Needs and Scientific Efforts Applicable to the Region
Pacific Southwest Region
Ecological and Social Context
Prescribed Fire and Smoke
Smoke Research Needs and Scientific Efforts Applicable to the Region
Rocky Mountain Region
Ecological and Social Context
Prescribed Fire and Smoke
Smoke Research Needs and Scientific Efforts Applicable to the Region
Southern Region
Ecological and Social Context
Prescribed Fire and Smoke
Southwestern Region
Ecological and Social Context
Prescribed Fire and Smoke
Smoke Research Needs and Current Efforts Applicable to the Region
Appendix B Smoke Monitoring Networks, Models, and Mapping Tools
Air Information Report for Public Awareness and Community Tracking (AIRPACT)
Air Quality Index (AQI)
Air Quality Sensor Performance Evaluation Center (AQ-SPEC)
Air Resource Advisors (ARAs)
Air Sensor Toolbox
ALERTWildfire
ARISense
Blended Global Biomass Burning Emissions Product (GBBEPx V3)
BlueSky Smoke Modeling Framework
CALPUFF
Canopy Version of the Advanced Regional Prediction System (ARPS-Canopy)
Clean Air Status and Trends Network (CASTNET)
Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO)
Community Earth System Model (CESM)
Community Health Vulnerability Index
Community Multiscale Air Quality Model (CMAQ)
Comprehensive Air Quality Model with Extensions (CAMx)
CONSUME 3.0
Crisis Emergency Risk Communication (CERC)
DaySmoke
Environmental Benefits Mapping and Analysis Program–Community Edition (BenMAP-CE)
FARSITE
FIRETEC
FireWork
Fire and Smoke Model Evaluation Experiment (FASMEE)
Fire Effects Monitoring and Inventory System (FIREMON)
Fire Emission Production Simulator (FEPS)
Fire Energetics and Emissions Research v1.0 (FEER)
Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ)
Fire INventory from NCAR (FINN)
Fire Learning Network (FLN)
Fire Science Exchange Network (FSEN)
First Order Fire Effects Model (FOFEM)
The FLEXible PARTicle Dispersion Model (FLEXPART)
Forest Vegetation Simulator (FVS)
Fuel and Fire Tools (FFT)
Fuel Characteristic Classification System (FCCS)
Geostationary Operational Environmental Satellite (GOES)
Global Fire Assimilation System (GFAS)
Global Fire Emissions Database (GFED)
Global Forecast System (GFS)
Hadley Centre Global Environment Model Version 2 (HadGEM2-ES)
High-Resolution Rapid Refresh (HRRR) Model
Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT)
The Interagency Fuel Treatment Decision Support System (IFTDSS)
Light Detection and Ranging (Lidar)
Landscape Fire and Resource Management Planning Tools (LANDFIRE)
Missoula Fire Lab Emission Inventory (MFLEI)
Multi-angle Imaging SpectroRadiometer (MISR)
National Emission Inventory (NEI)
The National Environmental Public Health Tracking Network
National Fire Danger Rating System (NFDRS)
National Weather Service (NWS)
Natural Fuels Photo Series
North American Mesoscale Forecast System (NAM)
NWCG Smoke Management Guide for Prescribed Fire
PB-Piedmont (PB-P)
Photoload Sampling Technique
PurpleAir
QUIC-Fire
Quick Fire Emission Dataset v2.4 (QFED)
Smoke-Ready Toolbox for Wildfires
Smoke Sense
SPECIATE
VSMOKE
Western Wildfire Experiment for Cloud Chemistry, Aerosol Absorption and Nitrogen (WE-CAN)
Whole Atmosphere Community Climate Model (WACCM)
Wildfire Smoke: A Guide for Public Health Officials
Wildland-Urban Interface Fire Dynamics Simulator (WFDS)
Wildland Fire Emissions Information System (WFEIS)
WRF-SFIRE
References
Appendix C Abbreviations and Acronyms