Waveform Design for Active Sensing Systems: A Computational Approach

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

With a focus on developing computational algorithms for examining waveform design in diverse active sensing applications, this guide is ideal for researchers and practitioners in the field. The three parts conveniently correspond to the three categories of desirable waveform properties: good aperiodic correlations, good periodic correlations and beampattern matching. The book features various application examples of using the newly designed waveforms, including radar imaging, channel estimation for communications, an ultrasound system for breast cancer treatment and covert underwater communications. In addition to numerical results, the authors present theoretical analyses describing lower bounds or limitations of performance. Focusing on formulating practical problems mathematically and solving the mathematical problems using efficient and effective optimization techniques, the text pays particular attention to developing easy-to-use computational approaches. Most algorithms are accompanied by a table clearly detailing iteration steps and corresponding MATLAB codes are available on the companion website.

Author(s): Hao He, Jian Li, Petre Stoica
Publisher: Cambridge University Press
Year: 2012

Language: English
Pages: xiv+312

Waveform Design for Active Sensing Systems: A Computational Approach......Page 4
Contents......Page 6
Preface......Page 12
Notation......Page 14
Abbreviations......Page 15
1 Introduction......Page 16
1.1 Signal model......Page 17
1.2 Design metrics......Page 19
1.3 Review of existing waveforms......Page 21
Part I: Aperiodic correlation synthesis......Page 30
2 Single aperiodic sequence design......Page 32
2.1 Cyclic algorithm-new (CAN)......Page 33
2.2 Weighted cyclic algorithm-new (WeCAN)......Page 36
2.3.2 Weighted integrated sidelobe level (WISL) design......Page 40
2.3.3 Channel estimation in communications......Page 45
2.3.4 Quantization effects......Page 46
2.4 Conclusions......Page 49
Gerchberg–Saxton algorithm (GSA)......Page 50
CAN and GSA......Page 52
3 Aperiodic sequence set design......Page 54
3.1 The Multi-CAN algorithm......Page 55
3.2 The Multi-WeCAN algorithm......Page 58
3.3 The Multi-CA-original (Multi-CAO) algorithm......Page 61
3.4.1 Multi-CAN......Page 63
3.4.2 Multi-WeCAN......Page 68
3.4.3 Multi-WeCAN continued......Page 70
3.4.5 Synthetic aperture radar (SAR) imaging......Page 72
Appendix 3A: Proof of Equation (3.28)......Page 80
Appendix 3B: Proof of Equation (3.47)......Page 81
4.1 Bound derivation......Page 82
4.2 Approaching the bound......Page 84
4.3 Conclusions......Page 88
5 Stopband constraint case......Page 89
5.1 Stopband CAN (SCAN)......Page 90
5.2 Weighted SCAN (WeSCAN)......Page 92
5.3.1 SCAN......Page 95
5.3.3 Relaxed amplitude constraint......Page 97
5.4 Conclusions......Page 102
6.1 AF properties......Page 103
6.2 Discrete-AF......Page 112
6.3 Minimizing the discrete-AF sidelobes......Page 114
6.4 Conclusions......Page 116
General AF......Page 117
Narrowband AF......Page 118
Wideband AF......Page 119
7.1 Discrete-CAF synthesis......Page 121
7.1.1 The proposed algorithm......Page 122
7.1.2 Numerical examples......Page 124
7.2 CAF synthesis......Page 130
7.2.1 The proposed algorithm......Page 131
7.2.2 Numerical examples......Page 133
Appendix 7A: Constant volume property of discrete-CAF......Page 136
8 Joint design of transmit sequence and receive filter......Page 138
8.1 Data model and problem formulation......Page 139
8.2 A gradient approach......Page 141
8.3 A frequency-domain approach......Page 143
8.4 Specialization for matched filtering......Page 149
8.5 Numerical examples......Page 151
8.5.1 Spot jamming......Page 152
8.5.2 Barrage jamming......Page 155
8.6 Conclusions......Page 157
Appendix 8A: Proof of Equation (8.25)......Page 160
Appendix 8B: Lagrange approach to solving (8.42)......Page 161
Part II: Periodic correlation synthesis......Page 162
9 Single periodic sequence design......Page 164
9.1 Design criteria......Page 165
9.2 The periodic CAN (PeCAN) algorithm......Page 168
9.3 Numerical examples......Page 169
Appendix 9A: Proof of Equation (9.9)......Page 170
10 Periodic sequence set design......Page 173
10.1 The Multi-PeCAO algorithm......Page 174
10.2 The Multi-PeCAN algorithm......Page 176
10.3.1 Multi-PeCAO......Page 178
10.3.2 Multi-PeCAN......Page 180
10.4 Conclusions......Page 182
11.1 Bound derivation......Page 183
11.2 Optimal ISL sequence sets......Page 186
11.3 Numerical examples......Page 188
11.4 Conclusions......Page 189
12 Periodic ambiguity function (PAF)......Page 190
12.1 PAF properties......Page 191
12.2 Discrete-PAF......Page 192
12.3 Minimizing the discrete-PAF sidelobes......Page 197
12.4 Conclusions......Page 199
Part III: Transmit beampattern synthesis......Page 200
13 Narrowband beampattern to covariance matrix......Page 202
13.1 Problem formulation......Page 203
13.2.1 Maximum power design for unknown target locations......Page 205
13.2.2 Maximum power design for known target locations......Page 206
13.2.3 Beampattern matching design......Page 208
13.2.4 Minimum sidelobe beampattern design......Page 211
13.3 Numerical examples......Page 212
13.3.1 Beampattern matching design......Page 213
13.3.2 Minimum sidelobe beampattern design......Page 220
Appendix 13A: Covariance matrix rank......Page 226
14.1 Problem formulation......Page 228
14.2 Cyclic algorithm for signal synthesis......Page 230
14.3 Numerical examples......Page 231
14.4 Conclusions......Page 234
15.1 Problem formulation......Page 237
15.2 The proposed design methodology......Page 240
15.2.1 Beampattern to spectrum......Page 241
15.2.2 Spectrum to waveform......Page 242
15.3.1 The idealized time-delayed case......Page 244
15.3.2 A narrow mainbeam......Page 245
15.3.4 A wide mainbeam......Page 248
Appendix 15A: Narrowband transmit beampattern......Page 257
Appendix 15B: Receive beampattern......Page 258
Part IV: Diverse application examples......Page 260
16.1 Problem formulation......Page 262
16.2.1 Matched filter......Page 264
16.2.2 Instrumental variable (IV) receive filter......Page 265
16.3 Iterative adaptive approach (IAA)......Page 266
16.4.1 Negligible Doppler example......Page 267
16.5 Conclusions......Page 270
17 Ultrasound system for hyperthermia treatment of breast cancer......Page 274
17.1 Waveform diversity based ultrasound hyperthermia......Page 275
17.2 Numerical results......Page 277
17.3 Conclusions......Page 281
18 Covert underwater acoustic communications – coherent scheme......Page 282
18.1 Problem formulation......Page 283
18.2 Spreading waveform synthesis......Page 284
18.3 Numerical examples......Page 288
18.4 Conclusions......Page 294
19.1 RAKE energy-based detection of orthogonal signals......Page 295
19.2 RAKE demodulator for DPSK signals......Page 298
19.3.1 Impact of P and R on the BER performance......Page 302
19.3.2 RAKE reception based on the principal arrival......Page 303
19.4.1 Binary orthogonal modulation......Page 305
19.4.2 DPSK modulation......Page 311
19.5 Conclusions......Page 315
References......Page 316
Index......Page 326