Waste Treatment in the Biotechnology, Agricultural and Food Industries: Volume 1

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book and its 2 sister books (Volumes 2 and 3) of the Handbook of Environmental Engineering (HEE) series have been designed to serve as a mini-series covering agricultural and green biotechnologies. It is expected to be of value to advanced undergraduate and graduate students, to designers of sustainable biological resources systems, and to scientists and researchers. The aim of these books is to provide information on treatment and management of agricultural, pharmaceutical and food wastes and to serve as a basis for advanced study or specialized investigation of the theory and analysis of various integrated environmental control and waste recycle systems. 


Volume 1 covers topics on: treatment and management of livestock wastes; waste treatment in the pharmaceutical biotechnology industry using green environmental technologies; vermicomposting process for treating agricultural and food wastes; the impacts of climate change on agricultural, food, and public utility industries; innovative PACT activated sludge, CAPTOR activated sludge, activated bio-filter, vertical loop reactor, and PHOSTRIP processes; agricultural waste treatment by water hyacinth aquaculture, wetland aquaculture, evapotranspiration, rapid rate land treatment , slow rate land treatment, and subsurface infiltration; production and applications of crude polyhydroxyalkanoate-containing bioplastic from agricultural and food-processing wastes; optimization processes of biodiesel production from pig and neem seeds blend oil using alternative catalysts from waste biomass; making castor oil a promising source for the production of flavor and fragrance through lipase mediated biotransformation; and waste treatment and minimization in baker's yeast industry.



Author(s): Lawrence K. Wang, Mu-Hao Sung Wang, Yung-Tse Hung
Series: Handbook of Environmental Engineering, 26
Publisher: Springer
Year: 2022

Language: English
Pages: 493
City: Cham

Preface
Contents
About the Editors
Contributors
Chapter 1: Management and Treatment of Livestock Wastes
1.1 Introduction
1.1.1 Federal Regulations
1.1.2 State Regulations
1.2 Wastewater Characteristics
1.2.1 General Characteristics of Wastewater
1.2.1.1 Terminology
1.2.1.2 Wastewater Characteristics
1.2.2 Milk House Wastewater Characteristics
1.2.2.1 Treatment of Milk House Wastewater
1.2.2.2 Conservation
1.3 Waste Treatment
1.3.1 Anaerobic Digestion
1.3.1.1 Types of Anaerobic Digesters
1.3.2 Constructed Wetlands
1.3.2.1 Description
1.3.2.2 Constructed Wetland Types
1.3.2.3 Constructed Wetland Design
1.3.3 Lagoons
1.3.3.1 Anaerobic Lagoons
1.3.3.2 Aerobic Lagoons
1.3.3.3 Facultative Lagoons
1.3.4 Thermal and Biological Chemical Treatment for Biogas Producton
1.3.4.1 Description
1.3.4.2 Pyrolysis
1.3.4.3 Direct Liquefaction
1.3.4.4 Gasification
1.3.5 Composting
1.3.6 Vermicomposting
1.3.7 Summary
1.4 Land Application of Livestock Wastes
1.4.1 Description
1.4.2 Manure Handling Equipment
1.4.2.1 Solid Manure
1.4.2.2 Semisolid Manure
1.4.2.3 Liquid Manure
1.4.3 Time of Application
1.4.4 Rate of Application
1.4.5 Summary
1.5 Storage of Livestock Wastes
1.5.1 Description
1.5.2 Storage Time
1.5.3 Facilities to Store Livestock Waste
1.5.3.1 Solid Manure Storage
1.5.3.2 Semisolid Manure Storage
1.5.3.3 Liquid Manure Storage
1.5.4 Storage Area Design
1.5.5 Summary
1.6 Feedlot Runoff Control Systems
1.6.1 Description
1.6.2 Runoff Control Systems
1.6.2.1 Descrtiption
1.6.2.2 Clean Water Diversion
1.6.2.3 Discharge Runoff Control
1.6.2.4 Vegetative Filter Strips
1.6.3 Summary
1.7 Odors and Gases
1.7.1 Odors: Origin and Nature
1.7.2 Sources of Odors
1.7.3 Odor Prevention
1.7.3.1 Animal Nutrition Management
1.7.3.2 Manure Treatment and Handling
1.7.3.3 Waste Treatment Methods
1.7.3.4 Livestock Operations Management
1.7.3.5 Summary
1.7.4 Greenhouse Gas Emissions
1.8 Pathogens in Livestock Industries
1.9 Livestock Waste Management Computer Software
1.10 Recent Advances in Livestock Waste Treatment and Management
1.10.1 Latest Technology Development, Market-Driven Strategies, and US Policy Changes
1.10.2 Livestock Water Recycling (LWR) System
1.10.3 BET Advanced Technologies To Benefit From Policy Changes
1.11 Conclusion
References
Glossary of Livestock Waste Management
Chapter 2: Waste Treatment in the Pharmaceutical Biotechnology Industry Using Green Environmental Technologies
2.1 Introduction to Biotechnology
2.1.1 Pharmaceutical Industry and Biotechnology Terminologies
2.1.2 Historical Development of Biotechnology Industry
2.1.3 Core Technologies
2.1.4 Biotechnology Materials
2.1.5 Drug Development
2.1.6 Gene Sequencing and Bioinformatics
2.1.7 Applications of Biotechnology Information to Medicine
2.1.8 Applications of Biotechnology Information to Nonmedical Markets
2.1.9 The Regulatory Environment
2.2 General Industrial Description and Classification
2.2.1 Industrial Classification of Biotechnology Industry’s Pharmaceutical Manufacturing
2.2.2 Biotechnology Industry’s Pharmaceutical SIC Subcategory Under the USEPA’s Guidelines
2.3 Manufacturing Processes and Waste Generation
2.3.1 Fermentation
2.3.2 Biological Product Extraction
2.3.3 Chemical Synthesis
2.3.4 Formulation, Mixing, and Compounding
2.3.5 Research and Development
2.4 Waste Characterization and Options for Waste Disposal
2.4.1 Waste Characteristics
2.4.2 Options for Waste Disposal
2.5 Environmental Regulations on Pharmaceutical Wastewater Discharges
2.5.1 Regulations for Direct Discharge
2.5.1.1 Best Practicable Control Technology Currently Available (BPT)
2.5.1.2 Best Available Control Technology Economically Achievable (BAT)
2.5.1.3 New Source Performance Standards (NSPS)
2.5.2 Regulations for Indirect Discharge
2.5.2.1 Pretreatment Standards for Existing Sources (PSES)
2.5.2.2 Pretreatment Standards for New Sources (PSNS)
2.5.3 Historical View on Regulations
2.5.4 Regulations for Managing Pharmaceutical Wastes
2.6 Waste Management
2.6.1 Strategy of Waste Management
2.6.2 In-Plant Control
2.6.2.1 Material Substitution
2.6.2.2 Process Modification
2.6.2.3 Recycling Wastewater and Recovering Materials
2.6.2.4 Water Conservation and Reuse
2.6.2.5 Segregation and Concentration of Wastes
2.6.2.6 Good Operating Practices
2.6.2.7 Reduction of Air and Dust Problems
2.6.2.8 Waste Exchanges
2.6.3 In-Plant Treatment
2.6.3.1 Cyanide Destruction Technologies
2.6.3.1.1 Chlorination
2.6.3.1.2 Ozonation
2.6.3.1.3 Alkaline Hydrolysis
2.6.3.2 Metal Removal
2.6.3.2.1 Alkaline Precipitation
2.6.3.2.2 Sulfide Precipitation
2.6.3.2.3 Chemical Reduction
2.6.3.3 Solvent Recovery and Removal
2.6.3.3.1 Steam Stripping
2.6.3.3.2 Air Stripping
2.6.3.3.3 Advanced Physocochemical Treatment Processes
2.6.4 End-of-Pipe Treatment Technologies
2.6.4.1 Primary Treatment
2.6.4.1.1 Equalization and Neutralization
2.6.4.1.2 Screening and Clarification
2.6.4.1.3 Primary Flotation Clarification and Secondary Flotation Clarification
2.6.4.2 Secondary Biological Treatment
2.6.4.2.1 Activated Sludge
2.6.4.2.2 Aerated Lagoon
2.6.4.2.3 Trickling Filter
2.6.4.2.4 Anaerobic Treatment
2.6.4.2.5 Advanced Biological Treatment Methods
2.6.4.3 Tertiary Treatment
2.6.4.3.1 Filtration and Carbon Adsorption
2.6.4.3.2 Coagulation, Flocculation, and Clarification
2.6.4.3.3 Chlorination
2.6.4.4 Residue Treatment and Waste Disposal
2.7 Case Study
2.7.1 Factory Profiles
2.7.2 Raw Materials and Production Process
2.7.3 Waste Generation and Characteristics
2.7.4 End-of-Pipe Treatment Case Histories and Green Environmental Technologies
2.7.4.1 Case Histories of Current Technologies
2.7.4.2 Green Environmental Technologies Developed by the Lenox Institute of Water Technology (LIWT)
2.7.5 Pharmaceutical Waste Minimization Case Study of Hennepin County Medical Center
2.7.5.1 Company Overview [108]
2.7.5.2 Waste Reduction Project [108]
2.7.5.2.1 Crash Boxes
2.7.5.2.2 Other Reverse Distribution Drugs
2.7.5.3 Results
2.7.6 Pharmaceutical Waste Minimization Case Study of Falls Memorial Hospital
2.7.6.1 Company Overview [108]
2.7.6.2 Inventory Reduction Project [108]
2.7.6.2.1 Chemotherapy Drugs [108, 109]
2.7.6.2.2 Routine Stock on Floors
2.7.6.2.3 Therapeutic Substitution
2.7.6.3 Pollution Prevention Impacts
2.7.7 Recent Investigations of Pharmaceutical Wastewater Treatment Technologies
2.7.7.1 Chemical Synthesis-Based Pharmaceutical Wastewater Treatment Technologies
2.7.7.2 Fermentation Process-Based Pharmaceutical Wastewater Treatment Technology
2.8 Summary and Conclusions
Appendix 1: BPT effluent limitations for subcategory A (fermentation operations), subcategory B (biological and natural extraction operations), subcategory C (chemical synthesis operations), and subcategory D (mixing, compounding, or formulatin
Appendix 2: BAT effluent limitations for subcategory A (fermentation operations) and subcategory C (chemical synthesis operations)
Appendix 3: BAT effluent limitations for subcategory B (biological and natural extraction operations) and subcategory D (mixing, compounding, or formulating operations)
Appendix 4: NSPS for subcategory A (fermentation operations) and subcategory C (chemical synthesis operations)
Appendix 5: NSPS for subcategory B (biological and natural extraction operations) and subcategory D (mixing, compounding, or formulating operations)
Appendix 6: PSES for subcategory A (fermentation operations) and subcategory C (chemical synthesis operations)
Appendix 7: PSES for subcategory B (biological and natural extraction operations) and subcategory D (mixing, compounding, or formulating operations)
Appendix 8: PSNS for subcategory A (fermentation operations) and subcategory C (chemical synthesis operations)
Appendix 9: PSNS for subcategory B (biological and natural extraction operations) and subcategory D (mixing, compounding, or formulating operations)
References
Glossary of Biotechnology and Pharmaceutical Industry
Chapter 3: Vermicomposting Process for Treating Agricultural and Food Wastes
3.1 Introduction
3.1.1 Summary
3.1.2 Process Description
3.2 Technology Development
3.3 Problems and Technology Breakthrough
3.3.1 Introduction
3.3.2 Problems
3.3.3 Progress in Vermicomposting Outside the USA
3.4 Pioneers, Current Status, and Resources
3.4.1 Pioneers and Current Status
3.4.2 Resources
3.5 Process Design Considerations
3.5.1 Process Adoption and Advantages
3.5.2 Process Operation and Troubleshooting
3.5.3 Process Limitations
3.5.4 Process Design Criteria
3.6 Process Application Examples
3.7 Future Development and Direction
References
Glossary
Chapter 4: The Impacts of Climate Change on Agricultural, Food, and Public Utility Industries
4.1 Introduction
4.1.1 Weather, Climate, and Climate Change
4.1.2 Greenhouse Gases, Greenhouse Effect, Global Warming, Global Warming Potential
4.2 Main Contributors to Greenhouse Gases
4.3 Global Warming Potential and Its Limitations
4.4 Heat Absorption by Carbon Dioxide
4.5 Rising Temperature Trend in the Environment
4.5.1 Atmosphere Temperature Increase
4.5.2 Land and Ocean Temperature Increase
4.5.3 Rising Temperatures of Land, Air, Sea, and Ice
4.6 Increased Temperatures on Land and Its Impacts on Agriculture
4.7 Effect of Global Warming and Climate Change on Sea Level Rise
4.8 Increased Salinity Intrusion in Rivers and Estuaries
4.8.1 Salinity Intrusion in Rivers and Estuaries
4.8.2 Water Quality and Water Supply Impacted by Climate Change and Salinity Intrusion
4.8.3 Agricultural Irrigation and Operations Impacted by Climate Change and Salinity Intrusion
4.8.4 Food Production Impacted by Climate Change and Salinity Intrusion
4.8.5 Ecosystem Impacts Due to Loss of Freshwater Habitat (Recreation, Fishing)
4.9 Impacts of Solid Waste Landfill Gas on Sanitary Landfill Utility, Ecosystem, and Human
4.9.1 Impacts on Sanitary Landfill Operations and Surrounding Environment
4.9.2 Impacts on Human Health
4.9.3 Impacts on Vegetation
4.10 Natural Variability
4.11 Applications to Take Action
4.12 Summary
References
Glossary
Chapter 5: Innovative PACT Activated Sludge, CAPTOR Activated Sludge, Activated Bio-Filter, Vertical Loop Reactor, and PhoStrip Processes
5.1 Powdered Activated Carbon Treatment (PACT)
5.1.1 Types of PACT Systems
5.1.2 Applications and Performance
5.1.3 Process Equipment
5.1.4 Process Limitations
5.2 Carrier-Activated Sludge Processes (CAPTOR and CAST Systems)
5.2.1 Advantages of Biomass Carrier Systems
5.2.2 The CAPTOR Process
5.2.3 Development of CAPTOR Process
5.2.4 Pilot-Plant Study
5.2.5 Full-Scale Study of CAPTOR and CAST
5.2.5.1 Full-Scale Plant Initial Results
5.2.5.2 Pilot-Scale Studies for Project Development
5.2.5.3 Full-Scale Plant Results After Modifications
5.2.5.4 Overall Conclusions
5.3 Activated Bio-filter (ABF)
5.3.1 Description
5.3.2 Applications
5.3.3 Design Criteria
5.3.4 Performance
5.4 Vertical Loop Reactor (VLR)
5.4.1 Description
5.4.2 Applications
5.4.3 Design Criteria
5.4.4 Performance
5.4.5 USEPA Evaluation of VLR
5.4.6 Energy Requirements
5.4.7 Costs
5.5 PhoStrip Process
5.5.1 Description
5.5.2 Applications
5.5.3 Design Criteria
5.5.4 Performance
5.5.5 Cost
5.5.5.1 Construction Cost
5.5.5.2 Operation and Maintenance Cost
Appendix 1: US Yearly Average Cost Index for Utilities [83]
References
Glossary
Chapter 6: Agricultural Waste Treatment by Water Hyacinth Aquaculture, Wetland Aquaculture, Evapotranspiration, Rapid Rate Land Treatment, Slow Rate Land Treatment, and Subsurface Infiltration
6.1 Aquaculture Treatment: Water Hyacinth System
6.1.1 Description
6.1.2 Applications
6.1.3 Limitations
6.1.4 Design Criteria
6.1.5 Performance
6.2 Aquaculture Treatment: Wetland System
6.2.1 Description
6.2.2 Constructed Wetlands
6.2.3 Applications
6.2.4 Limitations
6.2.5 Design Criteria
6.2.6 Performance
6.3 Evapotranspiration System
6.3.1 Description
6.3.2 Applications
6.3.3 Limitations
6.3.4 Design Criteria
6.3.5 Performance
6.3.6 Costs
6.4 Land Treatment: Rapid Rate System
6.4.1 Description
6.4.2 Applications
6.4.3 Limitations
6.4.4 Design Criteria
6.4.5 Performance
6.4.6 Costs
6.5 Land Treatment: Slow Rate System
6.5.1 Description
6.5.2 Applications
6.5.3 Limitations
6.5.4 Design Criteria
6.5.5 Performance
6.5.6 Costs
6.6 Land Treatment: Overland Flow System
6.6.1 Description
6.6.2 Application
6.6.3 Limitations
6.6.4 Design Criteria
6.6.5 Performance
6.6.6 Costs
6.7 Subsurface Infiltration
6.7.1 Description
6.7.2 Applications
6.7.3 Limitations
6.7.4 Design Criteria
6.7.5 Performance
Appendix 1: US Yearly Average Cost Index for Utilities [24]
References
Glossary of Emerging Natural Waste Systems [69, 70]
Chapter 7: Production and Applications of Crude Polyhydroxyalkanoate-Containing Bioplastic from the Agricultural and Food-Processing Wastes
7.1 Biodegradable Plastics
7.2 Nutrients for Non-aseptic Bioplastic Production
7.3 Food-Processing and Agricultural Wastes for Bioplastic Production
7.4 Batch and Continuous Biosynthesis of PHA Bioplastic by Mixed Culture
7.5 Downstream Processes
7.6 Crude Bioplastic for Construction and Agricultural Applications
7.7 Conclusions
References
Chapter 8: Optimization Processes of Biodiesel Production from Pig and Neem (Azadirachta indica A. Juss) Seeds Blend Oil Using Alternative Catalysts from Waste Biomass
8.1 Introduction
8.2 Materials and Methods
8.2.1 Materials
8.2.1.1 Pig Fat, Neem Oil, Palm Kernel Shell Husk, and Kola Nut Husk
8.2.1.2 Chemicals
8.2.2 Methods
8.2.2.1 Oils Preparation
8.2.2.2 Oil Blends and Their Characterization
8.2.2.3 Catalyst Preparation
8.2.2.4 Characterization of Calcined Powder
8.2.3 Biodiesel Production
8.2.3.1 Esterifying the Oil Mixture
8.2.3.2 Transesterification of Esterified Oil Mixed to Biodiesel
8.2.3.3 Experimental Design and Statistical Analysis
8.2.3.4 Physicochemical Properties of MOB
8.3 Results and Discussion
8.3.1 Physicochemical Properties and Fatty Acid Composition of Oils and Blend
8.3.2 Catalyst Characterization and Elemental Analysis
8.3.3 Conversion of Oils to Biodiesel
8.3.3.1 Oil Blend
8.3.3.2 Esterification of BO
8.3.3.3 Statistical Optimization of Base-Catalyzed Transesterification
8.3.3.4 Properties of MOB
8.4 Conclusion
References
Chapter 9: Castor Oil: A Promising Source for the Production of Flavor and Fragrance Through Lipase-Mediated Biotransformation
9.1 Introduction: Why Castor Oil?
9.2 Geographical Distribution of Castor Plants
9.3 Castor Oil Scenario
9.4 Composition, Properties, and Applications of Castor Oil
9.5 Castor Oil Processing Techniques for Aromatic Compounds
9.5.1 Hydrolysis and Purification of Castor Oil to Form Ricinoleic Acid
9.5.2 Chemical Transformation of Castor Oil
9.5.3 Biotransformation of Castor Oil to Form Enriched Flavored Products
9.5.3.1 Lipase-Mediated Biotransformation
9.5.3.2 Bioconversion of Ricinoleic Acid (RA) to γ-Decalactone (GDL)
9.5.3.3 Optimal Conditions for Biotransformation
9.5.3.3.1 Effect of Carbon Source
9.5.3.3.2 Effect of Nitrogen Source
9.5.3.3.3 Effects of Temperature
9.5.3.3.4 Effect of pH
9.5.3.4 Significance of Bioreactors
9.6 Castor Oil: Advantages and Disadvantages
9.6.1 Advantages
9.6.2 Disadvantages
9.6.3 Safety Assessment or Toxicity Study of Castor
9.7 Concluding Remarks
References
Chapter 10: Treatment and Minimization of Waste in Baker’s Yeast Industry
10.1 Introduction
10.2 Baker’s Yeast Industry
10.2.1 Yeast
10.2.2 Substrates
10.2.3 Production of Baker’s Yeast
10.3 Wastewater Management
10.3.1 Wastewater Sources
10.3.2 Wastewater Characterization
10.3.3 Wastewater Treatment Processes
10.3.3.1 Biological Treatment Processes
10.3.3.2 Physicochemical Treatment Processes
10.3.3.2.1 Coagulation/Flocculation
10.3.3.2.2 Adsorption
10.3.3.2.3 Evaporation Systems
10.3.3.3 Advanced Treatment Processes
10.3.3.3.1 Membrane Process
10.3.3.3.2 Oxidation Process
10.3.3.3.3 Electrochemical Processes
10.3.3.3.4 Wet-Air Oxidation Process
10.3.3.3.5 Ultrasound Process
10.3.4 Case Studies: Wastewater Treatment Plants and Related Regulations
10.4 Sludge Management
10.4.1 Description of Composting Operation
10.4.2 Composting Techniques
10.4.3 Compost Quality
10.4.4 Control of Nuisance Conditions
10.4.4.1 Control of Dust Formation
10.4.4.2 Odor Control
10.4.5 Land Application of Sludge
10.5 Specific Subjects
10.5.1 Control of H2S in Biogas Generating from Anaerobic Treatment of Fermentation Industry
10.5.2 Vinasse
10.5.3 VOC Emissions
10.5.4 Biogas Production
10.6 Approaches on Management of Sources in Baker’s Yeast Industry
10.6.1 Water Conservation
10.6.2 Waste Minimization
10.6.2.1 Minimizing Extrinsic Waste
10.6.2.2 Recovery of Waste
10.6.2.3 Methodological Approach
10.6.2.4 Product Route Determination
10.6.2.5 Inventory Tools
10.6.2.6 Waste Reduction: Methodological Evaluation of Waste Minimization Strategies
10.6.2.7 Waste Source Identification
10.6.2.8 Causative Analysis of Waste
10.6.2.9 Causes of Waste Related to Input Material Characteristics
10.6.2.10 Causes of Waste Related to Technology
10.6.2.11 Causes of Waste Related to Process Execution and Management
10.6.2.12 Causes of Waste Related to Recovery and Reuse
10.6.2.13 Formulation of Waste Minimization Strategies
10.6.2.14 Strategies for Minimizing Intrinsic Waste
References
Glossary
Index