Vision is not an end in itself. Instead, it has evolved to assure survival in a dynamic environment. Vision - as well as the other senses - evolved from the necessity to act in this environment. Therefore, perceptual processes and action planning are much more interlocked than evident at first sight. This special issue examines the basic processes of space perception and how these processes interact with action planning and motor control. The tasks under consideration range from the simple localization of a single object to the coordination of a series of events in natural scenes. The contributions were written by various experts in the field, ranging from experimental psychologists, neurophysiologists to computational modellers and philosophers. Each contribution introduces new concepts and ideas that explain how visual space is being established and represented. The overarching question is whether vision and action are based on a single spatial map or on different, interacting spatial representations.
Author(s): Jochen Müsseler, A.H.C. Van der Heijden, Dirk Kerzel
Series: A Special Issue of Visual Cognition (Special Issues of Visual Cognition) v. 11, issues 2,3
Edition: Special
Publisher: Psychology Press
Year: 2004
Language: English
Pages: 312
Book Cover......Page 1
Title......Page 2
Copyright......Page 3
Contents......Page 4
Visual space perception and action: Introductory remarks......Page 6
CURRENT APPROACHES ON VISUAL SPACE PERCEPTION AND ACTION......Page 7
THE CONTRIBUTIONS TO THE SPECIAL ISSUE......Page 9
REFERENCES......Page 12
“CODE POSITION” THEORY......Page 14
Theoretical problems......Page 15
Empirical problems......Page 16
“CODING POSITION BY POSITION” AND INTENDED ACTION......Page 18
Theoretical considerations......Page 19
Empirical data......Page 20
PLAUSIBILITY OF THE CODE POSITION THEORY......Page 21
THE REPRESENTATION PROBLEM......Page 22
TEMPORAL STRUCTURE VERSUS SPATIAL STRUCTURE......Page 23
Activity of a single cell during exploration......Page 25
Activity of the entire map during exploration......Page 26
PERCEPTUAL SPACE, ACTIVITY PATTERN, AND RETINOTOPIC SPACE......Page 30
MULTIPLE SPACES......Page 31
Ontogenetical constraints......Page 32
CONCLUSION......Page 33
REFERENCES......Page 34
Multisensory self-motion encoding in parietal cortex......Page 39
VISUAL MOTION PROCESSING IN THE M-PATHWAY......Page 40
HEADING ENCODING IN AREA VIP......Page 41
VESTIBULAR STIMULATION......Page 43
TACTILE AND AUDITORY RESPONSES......Page 46
HUMAN BRAIN AREAS INVOLVED IN THE PROCESSING OF SELF-MOTION INFORMATION......Page 47
REFERENCES......Page 48
Localization of targets across saccades: Role of landmark objects......Page 51
Method......Page 55
Results......Page 57
EXPERIMENT 2......Page 62
Method......Page 64
Results......Page 65
Results......Page 67
Postsaccadic landmarks are important determinants of object localization and visual stability across saccades......Page 69
The effect of landmarks is limited to a spatial range close to the target......Page 70
Transsaccadic localization is dependent on relational information from before the saccade......Page 72
Time constraints for the spatial anchoring......Page 74
A modified theory of visual stability around saccadic eye movements......Page 75
Possible physiological mechanisms of visual stability across saccadic eye movements......Page 77
REFERENCES......Page 78
Transsaccadic integration of bystander locations......Page 82
EXPERIMENT 1......Page 88
Method......Page 90
Results......Page 94
Discussion......Page 97
Method......Page 99
Discussion......Page 100
EXPERIMENT 3......Page 101
Method......Page 102
Discussion......Page 104
GENERAL DISCUSSION......Page 106
REFERENCES......Page 110
Two spatial maps for perceived visual space: Evidence from relative mislocalizations......Page 114
Method......Page 120
Results......Page 121
EXPERIMENT 2......Page 123
EXPERIMENT 3......Page 124
Results and discussion......Page 126
EXPERIMENT 4......Page 127
Results and discussion......Page 128
GENERAL DISCUSSION......Page 129
REFERENCES......Page 131
Curved movement paths and the Hering illusion: Positions or directions?......Page 134
The model......Page 137
Comparison with experimental data......Page 138
Apparatus and stimuli......Page 139
Data analysis......Page 141
Results......Page 142
Discussion......Page 143
COMPARING PERCEPTION AND ACTION......Page 144
Data analysis......Page 145
A SECOND COMPARISON OF PERCEPTION AND ACTION......Page 146
Methods......Page 147
Results......Page 148
GENERAL DISCUSSION......Page 149
REFERENCES......Page 151
Compensation of neural delays in visual-motor behaviour: No evidence for shorter afferent delays for visual motion......Page 154
Methods......Page 159
Results......Page 160
EXPERIMENT 2......Page 161
EXPERIMENT 3......Page 162
Methods......Page 163
EXPERIMENT 4......Page 164
Results......Page 166
DISCUSSION......Page 167
REFERENCES......Page 175
Perceived localizations and eye movements with action-generated and computer-generated vanishing points of moving stimuli......Page 178
Method......Page 181
Results and discussion......Page 183
EXPERIMENT 2......Page 184
Results and discussion......Page 185
EXPERIMENT 3......Page 186
Method......Page 187
Results and discussion......Page 188
GENERAL DISCUSSION......Page 190
REFERENCES......Page 192
The role of action plans and other cognitive factors in motion extrapolation: A modelling study......Page 195
THE DYNAMIC MODEL......Page 198
FORWARD SHIFT OF THE INTERNAL REPRESENTATION......Page 201
PREDICTABLE CHANGES IN MOVEMENT DIRECTION......Page 204
THE INTEGRATION OF ACTION PLANS......Page 205
Actively produced movements......Page 206
Motor tracking of the moving target......Page 208
Action control over the vanishing point......Page 209
IMPLIED MOTION DISPLAYS......Page 211
DISCUSSION......Page 212
REFERENCES......Page 217
Anticipating action in complex scenes......Page 221
EXPERIMENT 1......Page 224
Methods......Page 225
Results......Page 227
Discussion......Page 228
EXPERIMENT 2......Page 230
Methods......Page 231
Results......Page 232
Discussion......Page 233
EXPERIMENT 3......Page 234
Methods......Page 235
Results......Page 237
Discussion......Page 238
Methods......Page 240
Results......Page 242
Discussion......Page 244
GENERAL DISCUSSION......Page 245
REFERENCES......Page 247
Reaching beyond spatial perception: Effects of intended future actions on visually guided prehension......Page 251
CONTEXT AND ACTION......Page 252
CONTEXT EFFECTS IN PREHENSION......Page 253
Apparatus......Page 255
Procedure......Page 256
Data analysis......Page 257
EXPERIMENT 1: GRASP & LIFT VS. GRASP & PLACE......Page 258
Results......Page 259
Discussion......Page 263
EXPERIMENT 2: GRASP & PLACE EASY VS. DIFFICULT......Page 264
Results......Page 265
Discussion......Page 268
Method......Page 269
Results......Page 270
Discussion......Page 273
COMPARISON OF EXPERIMENTS 1–3......Page 274
GENERAL DISCUSSION......Page 275
CONCLUSIONS......Page 276
REFERENCES......Page 277
Action influences spatial perception: Neuropsychological evidence......Page 280
SEPARATE REPRESENTATIONS FOR PERCEPTION AND ACTION?......Page 281
EFFECTS OF TOOL USE AND VISUOMOTOR CUEING ON NEGLECT AND EXTINCTION......Page 283
Method......Page 286
Results......Page 287
Discussion......Page 290
ACTION RELATIONS AFFECT PERCEPTUAL SELECTION IN VISUAL EXTINCTION......Page 292
Method......Page 298
Results......Page 299
Discussion......Page 300
GENERAL DISCUSSION......Page 301
The neural substrates of action coding......Page 302
REFERENCES......Page 303
Subject Index......Page 308