Video Compression & Communications--From Basics To H 261, H 263, H 264, Mpeg4 For Dvb & Hsdpa-Style Adaptive Turbo-Transceivers

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Edition: 2
Publisher: Wiley-Ieee

Language: English
Pages: 702
Tags: Информатика и вычислительная техника;Обработка медиа-данных;Обработка видео;

Video Compression & Communications: from Basics to H.261, H.263, H.264, MPEG4 for DVB & HSDPA-Style Adaptive Turbo-Transceivers (2nd Ed.)......Page 1
Contents......Page 6
About the Authors......Page 18
Other Wiley & IEEE Press Books on Related Topics......Page 20
Preface......Page 22
Acknowledgments......Page 24
1.1 A Brief Introduction to Compression Theory......Page 26
1.2 Introduction to Video Formats......Page 27
1.3 Evolution of Video Compression Standards......Page 30
1.3.2 Joint Photographic Experts Group......Page 33
1.3.4 The Motion Pictures Expert Group......Page 36
1.3.6 The ITU H.263 Standard......Page 37
1.3.8 The MPEG-4 Standard......Page 38
1.3.9 The H.26L/H.264 Standard......Page 39
1.4 Video Communications......Page 40
1.5 Organization of the Monograph......Page 42
Part1 Video Codecs for HSDPA-Style Adaptive Videophones......Page 44
2.1 Fractal Principles......Page 46
2.2 One-Dimensional Fractal Coding......Page 48
2.2.1 Fractal Codec Design......Page 52
2.2.2 Fractal Codec Performance......Page 53
2.3 Error Sensitivity & Complexity......Page 57
2.4 Summary & Conclusions......Page 58
3.1 Video Codec Outline......Page 60
3.2 The Principle of Motion Compensation......Page 62
3.2.1 Distance Measures......Page 65
3.2.2.1 Full or Exhaustive Motion Search......Page 67
3.2.2.2 Gradient-Based Motion Estimation......Page 68
3.2.2.3 Hierarchical or Tree Search......Page 69
3.2.2.4 Subsampling Search......Page 70
3.2.2.6 Gain-Cost-Controlled Motion Compensation......Page 71
3.2.3 Other Motion Estimation Techniques......Page 73
3.2.3.3 MC Using Higher Order Transformations......Page 74
3.2.4 Conclusion......Page 75
3.3.1 One-Dimensional Transform Coding......Page 76
3.3.2 Two-Dimensional Transform Coding......Page 77
3.3.3 Quantizer Training for Single-Class DCT......Page 80
3.3.4 Quantizer Training for Multiclass DCT......Page 81
3.4 The Codec Outline......Page 83
3.6 Gain-Controlled Motion Compensation......Page 85
3.7 The MCER Active/Passive Concept......Page 86
3.8 Partial Forced Update of the Reconstructed Frame Buffers......Page 87
3.9 The Gain/Cost-Controlled Inter-Frame Codec......Page 89
3.9.1 Complexity Considerations & Reduction Techniques......Page 90
3.10 The Bit-Allocation Strategy......Page 91
3.11 Results......Page 92
3.12.1 Bit Sensitivity......Page 95
3.12.2 Bit Sensitivity of Codec I & II......Page 96
3.13.1 Choice of Modem......Page 97
3.13.2.1.1 System Concept......Page 98
3.13.2.1.3 Source Sensitivity......Page 99
3.13.2.1.5 Transmission Format......Page 100
3.13.2.2.1 Automatic Repeat Request......Page 103
3.13.2.3 Systems 3–5......Page 104
3.14.1 Performance of System 1......Page 105
3.14.2.1 FER Performance......Page 108
3.14.2.2 Slot Occupancy Performance......Page 110
3.14.2.3 PSNR Performance......Page 111
3.14.3 Performance of Systems 3–5......Page 112
3.15 Summary & Conclusions......Page 114
4.2 The Codebook Design......Page 118
4.3 The Vector Quantizer Design......Page 120
4.3.1 Mean & Shape Gain Vector Quantization......Page 124
4.3.2 Adaptive Vector Quantization......Page 125
4.3.3 Classi.ed Vector Quantization......Page 127
4.3.4 Algorithmic Complexity......Page 128
4.4.1 Bit-Allocation Strategy......Page 130
4.4.2 Bit Sensitivity......Page 131
4.5.1 Choice of Modulation......Page 132
4.5.3 Architecture of System 1......Page 134
4.5.4 Architecture of System 2......Page 136
4.5.5 Architecture of Systems 3–6......Page 137
4.6.1 Simulation Environment......Page 138
4.6.2 Performance of Systems 1 & 3......Page 139
4.6.3 Performance of Systems 4 & 5......Page 140
4.6.4 Performance of Systems 2 & 6......Page 142
4.7.1 Introduction......Page 143
4.7.3 Compression......Page 145
4.7.5 Serial Concatenation & Iterative Decoding......Page 146
4.7.6 Transmission Frame Structure......Page 147
4.7.7 Frame Difference Decomposition......Page 148
4.7.8 VQ Codebook......Page 149
4.7.9 VQ-Induced Code Constraints......Page 151
4.7.10 VQ Trellis Structure......Page 152
4.7.11 VQ Encoding......Page 154
4.7.12 VQ Decoding......Page 155
4.7.13 Results......Page 157
4.8 Summary & Conclusions......Page 161
5.2 Quad-Tree Decomposition......Page 164
5.3.1 Zero-Order Intensity Match......Page 167
5.3.2 First-Order Intensity Match......Page 169
5.3.3 Decomposition Algorithmic Issues......Page 170
5.4 Model-Based Parametric Enhancement......Page 173
5.4.1 Eye & Mouth Detection......Page 174
5.4.2 Parametric Codebook Training......Page 176
5.4.3 Parametric Encoding......Page 177
5.5 The Enhanced QT Codec......Page 178
5.6 Performance & Considerations under Erroneous Conditions......Page 179
5.6.1 Bit Allocation......Page 180
5.6.2 Bit Sensitivity......Page 182
5.7.1 Channel Coding & Modulation......Page 183
5.7.2 QT-Based Transceiver Architectures......Page 184
5.8 QT-Based Video-Transceiver Performance......Page 187
5.9 Summary of QT-Based Video Transceivers......Page 190
5.10 Summary of Low-Rate Video Codecs & Transceivers......Page 191
Part2 High-Resolution Video Coding......Page 196
6.1.1 Basic Differential Pulse Code Modulation......Page 198
6.1.2 Intra/Inter-Frame Differential Pulse Code Modulation......Page 200
6.2.1 The Block Truncation Algorithm......Page 202
6.2.3 Intra-Frame Block Truncation Coding......Page 205
6.2.4 Inter-Frame Block Truncation Coding......Page 207
6.3 Subband Coding......Page 208
6.3.1 Perfect Reconstruction Quadrature Mirror Filtering......Page 210
6.3.2 Practical Quadrature Mirror Filters......Page 216
6.3.3 Run-Length-Based Intra-Frame Subband Coding......Page 220
6.3.4 Max-Lloyd-Based Subband Coding......Page 223
6.4 Summary & Conclusions......Page 227
7.2 Intra-Frame Quantizer Training......Page 230
7.3 Motion Compensation for High-Quality Images......Page 234
7.4.1 Properties of the DCT Transformed MCER......Page 240
7.4.2 Joint Motion Compensation & Residual Encoding......Page 247
7.5 The Proposed Codec......Page 249
7.5.1 Motion Compensation......Page 250
7.5.2 The Inter/Intra-DCT Codec......Page 251
7.5.3 Frame Alignment......Page 252
7.5.4 Bit-Allocation......Page 254
7.5.5 The Codec Performance......Page 255
7.5.6 Error Sensitivity & Complexity......Page 258
7.6 Summary & Conclusions......Page 260
Part3 H.261, H.263, H.264, MPEG2 & MPEG4 for HSDPA-Style Wireless Video Telephony & DVB......Page 262
8.2.1 Overview......Page 264
8.2.2 Source Encoder......Page 265
8.2.3 Coding Control......Page 267
8.2.4 Video Multiplex Coder......Page 268
8.2.4.1 Picture Layer......Page 269
8.2.4.2 Group of Blocks Layer......Page 270
8.2.4.4 Block Layer......Page 272
8.2.5 Simulated Coding Statistics......Page 275
8.2.5.1 Fixed-Quantizer Coding......Page 276
8.2.5.2 Variable Quantizer Coding......Page 277
8.3.1 Error Mechanisms......Page 278
8.3.2.1 Background......Page 280
8.3.2.2 Intra-Frame Coding......Page 281
8.3.2.5 Combined Source/Channel Coding......Page 282
8.3.3 Error Recovery......Page 283
8.3.4.1 Qualitative Effect of Errors on H.261 Parameters......Page 284
8.3.4.2 Quantitative Effect of Errors on a H.261 Data Stream......Page 287
8.3.4.2.1 Errors in an Intra-Coded Frame......Page 288
8.3.4.2.2 Errors in an Inter-Coded Frame......Page 290
8.3.4.2.3 Errors in Quantizer Indices......Page 292
8.3.4.2.4 Errors in an Inter-Coded Frame with Motion Vectors......Page 293
8.3.4.2.5 Errors in an Inter-Coded Frame at Low Rate......Page 296
8.4.1 Introduction......Page 297
8.4.3 Bitrate Reduction of the H.261 Codec......Page 298
8.4.4 Investigation of Macroblock Size......Page 299
8.4.5 Error Correction Coding......Page 300
8.4.6.1 Encoding History List......Page 303
8.4.6.2 Macroblock Compounding......Page 304
8.4.6.3 End of Frame Effect......Page 306
8.4.6.5 Packet Truncation & Compounding Algorithms......Page 307
8.5.1 System Architecture......Page 308
8.5.2 System Performance......Page 311
8.6 Summary & Conclusions......Page 318
9.1 Introduction......Page 320
9.2.1.2 Motion Compensation & Transform Coding......Page 322
9.2.2 Video Multiplex Coder......Page 323
9.2.2.2 Group of Blocks Layer......Page 325
9.2.2.3 H.261 Macroblock Layer......Page 326
9.2.2.4 H.263 Macroblock Layer......Page 327
9.2.2.5 Block Layer......Page 330
9.2.3 Motion Compensation......Page 331
9.2.3.1 H.263 Motion Vector Predictor......Page 332
9.2.3.2 H.263 Subpixel Interpolation......Page 333
9.2.4.1 Unrestricted Motion Vector Mode......Page 334
9.2.4.2 Syntax-Based Arithmetic Coding Mode......Page 335
9.2.4.2.1 Arithmetic Coding [1]......Page 336
9.2.4.3 Advanced Prediction Mode......Page 337
9.2.4.3.2 Overlapped Motion Compensation for Luminance......Page 338
9.2.4.4 P-B Frames Mode......Page 340
9.3.1 Introduction......Page 343
9.3.2 H.261 Performance......Page 344
9.3.3 H.261/H.263 Performance Comparison......Page 347
9.3.4.1 Gray-Scale versus Color Comparison......Page 350
9.3.4.3 Coding Performance at Various Resolutions......Page 353
9.4 Summary & Conclusions......Page 360
10.2.1 Problems of Using H.263 in a Mobile Environment......Page 364
10.2.2 Possible Solutions for Using H.263 in a Mobile Environment......Page 365
10.2.2.3 Multimode Modulation Schemes......Page 366
10.2.2.4 Combined Source/Channel Coding......Page 367
10.3.2 Controlling the Bitrate......Page 368
10.3.3 Employing FEC Codes in the Videophone System......Page 370
10.3.4 Transmission Packet Structure......Page 371
10.3.5 Coding Parameter History List......Page 372
10.3.6.1 Operational Scenarios of the Packetizing Algorithm......Page 374
10.4.1 System Environment......Page 377
10.4.2.2 Effect of Packet Dropping on Image Quality......Page 379
10.4.2.3 Image Quality versus Channel Quality without ARQ......Page 381
10.4.2.4 Image Quality versus Channel Quality with ARQ......Page 382
10.4.3 Comparison of H.263 & H.261-Based Systems......Page 384
10.4.3.1 Performance with Antenna Diversity......Page 386
10.4.3.2 Performance over DECT Channels......Page 387
10.5 Transmission Feedback......Page 392
10.5.2 Implementation of Transmission Feedback......Page 396
10.5.2.1 Majority Logic Coding......Page 397
10.6 Summary & Conclusions......Page 401
11.1 Introduction......Page 404
11.2.1 MPEG-4 Pro.les......Page 405
11.2.2 MPEG-4 Features......Page 406
11.2.3 MPEG-4 Object-Based Orientation......Page 409
11.3 MPEG-4: Content-Based Interactivity......Page 412
11.3.1 VOP-Based Encoding......Page 414
11.3.2 Motion & Texture Encoding......Page 415
11.3.3 Shape Coding......Page 418
11.3.3.1 VOP Shape Encoding......Page 419
11.4 Scalability of Video Objects......Page 421
11.5.1 Subjective Video Quality Evaluation......Page 423
11.5.2 Objective Video Quality......Page 424
11.6 Effect of Coding Parameters......Page 425
11.7 Summary & Conclusion......Page 429
12.2 The ITU-T H.264 Project......Page 432
12.3 H.264 Video Coding Techniques......Page 433
12.3.1 H.264 Encoder......Page 434
12.4.1 Intra-Frame Prediction......Page 435
12.4.2.1 Block Sizes......Page 437
12.4.2.2 Motion Estimation Accuracy......Page 438
12.4.2.4 De-Blocking Filter......Page 439
12.4.3 Integer Transform......Page 440
12.4.3.1 Development of the......Page 441
12.4.3.2 Quantization......Page 444
12.4.3.3 The Combined Transform, Quantization, Rescaling & Inverse Transform Process......Page 445
12.4.3.4 Integer Transform Example......Page 446
12.4.4 Entropy Coding......Page 448
12.4.4.2 Context-Based Adaptive Binary Arithmetic Coding......Page 449
12.5.2 Intra-Frame Coding & Prediction......Page 450
12.5.3 Inter-Frame Prediction & Motion Compensation......Page 451
12.5.6 De-Blocking Filter......Page 452
12.6.2 MPEG-4 Performance......Page 453
12.6.3 H.264 Performance......Page 455
12.6.4 Comparative Study......Page 458
12.6.5 Summary & Conclusions......Page 460
13.2 Structure of Coded Visual Data......Page 462
13.2.1 Video Data......Page 463
13.2.4 Face Animation Parameter Data......Page 464
13.3.1 Start Codes......Page 465
13.5 Error-Resilient Video Coding in MPEG-4......Page 466
13.6.1 Resynchronization......Page 468
13.6.2 Data Partitioning......Page 470
13.6.4 Header Extension Code......Page 472
13.7.2 Introduction......Page 473
13.7.3 Simulated Coding Statistics......Page 474
13.7.4 Effects of Errors......Page 477
13.8 Chapter Conclusions......Page 482
14.1.1 Motivation & Background......Page 484
14.1.2 System Parameters......Page 485
14.1.3 Turbo Equalization......Page 487
14.1.4 Turbo-Equalization Performance......Page 490
14.1.4.1 Video Performance......Page 492
14.1.4.2 Bit Error Statistics......Page 494
14.2.1 Motivation & Video Transceiver Overview......Page 497
14.2.2 Multimode Video System Performance......Page 502
14.2.3 Burst-By-Burst Adaptive Videophone System......Page 505
14.2.4 Summary & Conclusions......Page 509
14.3.1 Motivation & Background......Page 510
14.3.2 AOFDM Modem Mode Adaptation & Signaling......Page 511
14.3.4 Video Compression & Transmission Aspects......Page 512
14.3.5 Comparison of Subband-Adaptive OFDM & Fixed Mode OFDM Transceivers......Page 513
14.3.6 Subband-Adaptive OFDM Transceivers Having Different Target Bitrates......Page 517
14.3.7 Time-Variant Target Bitrate OFDM Transceivers......Page 523
14.3.8 Summary & Conclusions......Page 529
14.4.1 Introduction......Page 531
14.4.2 System Overview......Page 532
14.4.2.1 System Parameters & Channel Model......Page 534
14.4.3 Employing Fixed Modulation Modes......Page 537
14.4.4 Employing Adaptive Modulation......Page 539
14.4.4.1 Performance of TTCM AQAM......Page 540
14.4.4.2 Performance of AQAM Using TTCM, TCC, TCM & BICM......Page 543
14.4.4.3 The Effect of Various AQAM Thresholds......Page 544
14.4.5 TTCM AQAM in a CDMA system......Page 545
14.4.5.1 Performance of TTCM AQAM in a CDMA system......Page 547
14.4.6 Conclusions......Page 550
14.5.1 Motivation & Background......Page 551
14.5.2 The Turbo Transceiver......Page 552
14.5.2.1 Turbo Decoding......Page 554
14.5.3 MIMO Channel Capacity......Page 556
14.5.4 Convergence Analysis......Page 559
14.5.5 Simulation Results......Page 564
14.6.1 Introduction......Page 568
14.6.2 Overview of the Proposed Schemes......Page 569
14.6.2.1 Joint Source & Channel Coding......Page 570
14.6.2.2 Iterative Decoding......Page 572
14.6.3.1 Scheme Hypothesis & Parameters......Page 574
14.6.3.2 EXIT Chart Analysis & Optimization......Page 575
14.6.4 Results......Page 577
14.6.4.1 Asymptotic Performance Following Iterative Decoding Convergence......Page 578
14.6.4.2 Performance During Iterative Decoding......Page 579
14.6.4.3 Complexity Analysis......Page 580
14.6.5 Conclusions......Page 582
14.7.1 Background & Motivation......Page 583
14.7.2 MPEG-2 Bit Error Sensitivity......Page 584
14.7.3 DVB Terrestrial Scheme......Page 595
14.7.4 Terrestrial Broadcast Channel Model......Page 597
14.7.5 Data Partitioning Scheme......Page 598
14.7.6 Performance of the Data Partitioning Scheme......Page 604
14.7.7 Nonhierarchical OFDM DVBP Performance......Page 614
14.7.8 Hierarchical OFDM DVB Performance......Page 619
14.7.9 Summary & Conclusions......Page 625
14.8.1 Background & Motivation......Page 626
14.8.2 DVB Satellite Scheme......Page 627
14.8.3 Satellite Channel Model......Page 629
14.8.4 The Blind Equalizers......Page 630
14.8.5 Performance of the DVB Satellite Scheme......Page 632
14.8.5.1 Transmission over the Symbol-Spaced Two-Path Channel......Page 633
14.8.5.3 Performance Summary of the DVB-S System......Page 639
14.8.6 Summary & Conclusions on the Turbo-Coded DVB System......Page 646
14.9 Summary & Conclusions......Page 647
14.10 Wireless Video System Design Principles......Page 648
Glossary......Page 650
Bibliography......Page 660
Index......Page 684
Author Index......Page 692