Vehicle Propulsion Systems: Introduction to Modeling and Optimization

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

New edition include new developments for propulsion systems and optimization methodologies Focuses on the minimization of fuel and energy consumption Numerous case studies illustrate the theory, making this a highly practical text Exercises are included at the end of each chapter and the solutions are available on the web This text provides an introduction to the mathematical modeling and subsequent optimization of vehicle propulsion systems and their supervisory control algorithms. Automobiles are responsible for a substantial part of the world's consumption of primary energy, mostly fossil liquid hydrocarbons and the reduction of the fuel consumption of these vehicles has become a top priority. Increasing concerns over fossil fuel consumption and the associated environmental impacts have motivated many groups in industry and academia to propose new propulsion systems and to explore new optimization methodologies. This third edition has been prepared to include many of these developments. In the third edition, exercises are included at the end of each chapter and the solutions are available on the web.

Author(s): Lino Guzzella, Antonio Sciarretta
Edition: 3rd
Publisher: Springer-Verlag
Year: 2013

Language: English
Pages: 418
Tags: Транспорт;Автомобильная и тракторная техника;Автомобили с электрическим и гибридным приводом;

Title Page......Page 1
Preface......Page 4
Contents......Page 9
Motivation......Page 14
Objectives......Page 15
Upstream Processes......Page 18
Energy Density of On-Board Energy Carriers......Page 23
Pathways to Better Fuel Economy......Page 25
Energy Losses......Page 26
Performance and Drivability......Page 31
Vehicle Operating Modes......Page 33
Test Cycles......Page 34
Mechanical Energy Demand......Page 36
Some Remarks on the Energy Consumption......Page 41
Methods and Tools for the Prediction of Fuel Consumption......Page 46
Average Operating Point Approach......Page 47
Quasistatic Approach......Page 50
Dynamic Approach......Page 53
Optimization Problems......Page 55
Software Tools......Page 56
Problems......Page 58
Introduction......Page 60
Normalized Engine Variables......Page 61
Engine Efficiency Representation......Page 62
Selection of Gear Ratios......Page 64
Gear-Box Efficiency......Page 67
Losses in Friction Clutches and Torque Converters......Page 68
Average Operating Point Method......Page 71
Quasistatic Method......Page 73
Measures to Improve the Fuel Economy of IC-Engine Powertrains......Page 76
Problems......Page 78
Electric Propulsion Systems......Page 80
Modeling of Electric Vehicles......Page 81
Introduction......Page 82
System Configurations......Page 83
Power Flow......Page 86
Functional Classification......Page 90
Concepts Realized......Page 92
Modeling of Hybrid Vehicles......Page 93
Introduction......Page 95
Quasistatic Modeling of Electric Motors......Page 100
Dynamic Modeling of Electric Motors......Page 105
Range Extenders......Page 117
Introduction......Page 118
Quasistatic Modeling of Batteries......Page 124
Dynamic Modeling of Batteries......Page 134
Introduction......Page 144
Quasistatic Modeling of Supercapacitors......Page 145
Dynamic Modeling of Supercapacitors......Page 149
Introduction......Page 150
Quasistatic Modeling of Electric Power Links......Page 151
Dynamic Modeling of Electric Power Links......Page 152
Introduction......Page 153
Quasistatic Modeling of Torque Couplers......Page 155
Introduction......Page 156
Quasistatic Modeling of Power Split Devices......Page 157
Dynamic Modeling of Power Split Devices......Page 161
Problems......Page 165
Short-Term Storage Systems......Page 176
Introduction......Page 179
Quasistatic Modeling of Flywheel Accumulators......Page 182
Dynamic Modeling of Flywheel Accumulators......Page 185
Introduction......Page 186
Quasistatic Modeling of CVTs......Page 188
Dynamic Modeling of CVTs......Page 191
Introduction......Page 192
Quasistatic Modeling of Hydraulic Accumulators......Page 193
Dynamic Modeling of Hydraulic Accumulators......Page 199
Introduction......Page 200
Quasistatic Modeling of Hydraulic Pumps/Motors......Page 201
Introduction......Page 204
Description of Operation Modes......Page 206
Problems......Page 212
Introduction......Page 213
Concepts Realized......Page 215
Introduction......Page 216
Quasistatic Modeling of Fuel Cells......Page 227
Dynamic Modeling of Fuel Cells......Page 242
Introduction......Page 246
Quasistatic Modeling of Fuel Reformers......Page 249
Dynamic Modeling of Fuel Reformers......Page 252
Problems......Page 253
Powertrain Control......Page 255
Heuristic Energy Management Strategies......Page 258
Optimal Energy Management Strategies......Page 261
Optimal Control Problem Statement......Page 262
Noncausal Control Methods (Offline Optimization)......Page 265
Causal Control Methods (Online Sub-Optimal Controllers)......Page 271
Problems......Page 280
Software Structure......Page 289
Results......Page 291
Model Description and Problem Formulation......Page 293
Case Study 3: IC Engine and Flywheel Powertrain......Page 295
Introduction......Page 296
Modeling and Experimental Validation......Page 298
Numerical Optimization......Page 299
Results......Page 301
Case Study 4: Supervisory Control for a Parallel HEV......Page 302
Modeling and Experimental Validation......Page 303
Control Strategies......Page 305
Results......Page 307
Modeling and Problem Formulation......Page 313
Optimal Control for a Specified Final Distance......Page 315
Optimal Control for an Unspecified Final Distance......Page 319
Case Study 6: Fuel Optimal Trajectories of a Racing FCEV......Page 322
Modeling......Page 323
Optimal Control......Page 326
Results......Page 329
Case Study 7: Optimal Control of a Series Hybrid Bus......Page 331
Modeling and Validation......Page 332
Optimal Control......Page 336
Results......Page 339
Case Study 8: Concept Evaluation for a Hybrid Pneumatic Engine......Page 341
Control Oriented Models......Page 342
Optimal Control Strategy......Page 348
Simulation Results......Page 350
Experimental Validation......Page 352
Problems without Constraints......Page 357
Numerical Solution......Page 359
Minimization with Equality Constraints......Page 361
Minimization with Inequality Constraints......Page 364
Introduction......Page 366
Optimal Control for the Basic Problem......Page 367
First Integral of the Hamiltonian......Page 371
Optimal Control with Specified Final State......Page 372
Optimal Control with Bounded Inputs......Page 373
Introduction......Page 378
Problem Definition......Page 379
Deterministic Dynamic Programming......Page 380
Stochastic Dynamic Programming......Page 381
Complexity......Page 382
Nearest Neighbor or Interpolation......Page 383
Scalar or Set Implementation......Page 386
Example: Mild Parallel HEV – Torque Split......Page 387
References......Page 391
Index......Page 412