Vehicle Powertrain Systems: Integration and Optimization

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

The powertrain is at the heart of vehicle design the engine – whether it is a conventional, hybrid or electric design – provides the motive power, which is then managed and controlled through the transmission and final drive components. The overall powertrain system therefore defines the dynamic performance and character of the vehicle. The design of the powertrain has conventionally been tackled by analyzing each of the subsystems individually and the individual components, for example, engine, transmission and driveline have received considerable attention in textbooks over the past decades. The key theme of this book is to take a systems approach – to look at the integration of the components so that the whole powertrain system meets the demands of overall energy efficiency and good drivability. Vehicle Powertrain Systems provides a thorough description and analysis of all the powertrain components and then treats them together so that the overall performance of the vehicle can be understood and calculated. The text is well supported by practical problems and worked examples. Extensive use is made of the MATLAB(R) software and many example programmes for vehicle calculations are provided in the text. Key features: Structured approach to explaining the fundamentals of powertrain engineering Integration of powertrain components into overall vehicle design Emphasis on practical vehicle design issues Extensive use of practical problems and worked examples Provision of MATLAB(R) programmes for the reader to use in vehicle performance calculations This comprehensive and integrated analysis of vehicle powertrain engineering provides an invaluable resource for undergraduate and postgraduate automotive engineering students and is a useful reference for practicing engineers in the vehicle industry. Contents Vehicle Powertrain Concepts Power Generation Characteristics of Internal Combustion Engines Vehicle Longitudinal Dynamics Transmissions Fuel Consumption Driveline Dynamics Hybrid Electric Vehicles Appendix: An Introduction to Bond Graph Modelling

Author(s): David Crolla, Behrooz Mashadi
Publisher: Wiley
Year: 2011

Language: English
Pages: 560
Tags: Транспорт;Автомобильная и тракторная техника;Трансмиссия;

VEHICLE POWERTRAIN SYSTEMS......Page 1
Contents......Page 9
About the Authors......Page 15
Preface......Page 17
List of Abbreviations......Page 19
1.1.1 Systems Approach......Page 23
1.1.2 History......Page 24
1.1.4 Hybrid Powertrains......Page 25
1.2.3 Vehicle Structure......Page 27
1.3 Vehicle Performance......Page 28
1.4 Driver Behaviour......Page 30
1.5 The Role of Modelling......Page 31
1.6 Aim of the Book......Page 32
References......Page 33
2.2 Engine Power Generation Principles......Page 35
2.2.1 Engine Operating Modes......Page 36
2.2.2 Engine Combustion Review......Page 38
2.2.3 Engine Thermodynamics Review......Page 40
2.2.4 Engine Output Characteristics......Page 55
2.2.5 Cylinder Pressure Variations......Page 56
2.3 Engine Modelling......Page 61
2.3.1 Engine Kinematics......Page 62
2.3.2 Engine Torque......Page 71
2.3.3 A Simplified Model......Page 80
2.3.4 The Flywheel......Page 88
2.4.1 Firing Order......Page 92
2.4.2 Engine Torque......Page 94
2.4.3 Quasi-Steady Engine Torque......Page 101
2.5.1 Engine Dynamometers......Page 102
2.5.2 Chassis Dynamometers......Page 104
2.5.3 Engine Torque-Speed Characteristics......Page 105
2.6.1 Converting Part Throttle Curves......Page 113
2.6.2 The MT Formula......Page 114
2.6.3 Interpretation......Page 115
2.7.1 Construction......Page 116
2.7.2 Sensors......Page 117
2.7.3 Maps and Look-up Tables......Page 118
2.8 Net Output Power......Page 120
2.8.2 Accessory Drives......Page 121
2.8.3 Environmental Effects......Page 122
2.10 Review Questions......Page 131
2.11 Problems......Page 132
Further Reading......Page 134
References......Page 135
3.2 Torque Generators......Page 137
3.2.1 Internal Combustion Engines......Page 138
3.3 Tractive Force......Page 140
3.3.1 Tyre Force Generation......Page 141
3.3.2 Mathematical Relations for Tractive Force......Page 144
3.3.3 Traction Diagrams......Page 149
3.4.1 Rolling Resistance......Page 151
3.4.2 Vehicle Aerodynamics......Page 156
3.4.3 Slopes......Page 160
3.4.4 Resistance Force Diagrams......Page 161
3.5.1 Maximum Power Delivery......Page 163
3.5.2 Continuous Gear-Ratio Assumption......Page 164
3.5.3 Governing Equations......Page 166
3.5.4 Closed Form Solution......Page 169
3.5.5 Numerical Solutions......Page 172
3.5.6 Power Requirements......Page 174
3.5.7 Time of Travel and Distance......Page 177
3.5.8 Maximum Speed......Page 181
3.6 Constant Torque Performance (CTP)......Page 183
3.6.1 Closed Form Solution......Page 184
3.6.2 Numerical Solutions......Page 189
3.7 Fixed Throttle Performance (FTP)......Page 191
3.7.1 Gearshift and Traction Force......Page 192
3.7.2 Acceleration, Speed and Distance......Page 194
3.7.4 Maximum Speed at Each Gear......Page 199
3.7.5 Best Acceleration Performance......Page 202
3.7.6 Power Consumption......Page 204
3.8 Throttle Pedal Cycle Performance (PCP)......Page 205
3.9 Effect of Rotating Masses......Page 210
3.9.1 Corrections to Former Analyses......Page 214
3.10 Tyre Slip......Page 217
3.11 Performance on a Slope......Page 219
3.11.1 Constant Power Performance (CPP)......Page 220
3.11.2 Constant Torque Performance (CTP)......Page 221
3.11.3 Fixed Throttle (FT)......Page 222
3.11.4 Variable Slopes......Page 224
3.12.1 Constant Rolling Resistance......Page 225
3.12.3 Inertia of Rotating Masses......Page 230
3.13.1 Component Efficiencies......Page 232
3.13.3 Effect of Rolling Resistance......Page 237
3.15 Review Questions......Page 238
3.16 Problems......Page 239
Further Reading......Page 247
References......Page 248
4.2 The Need for a Gearbox......Page 249
4.3.1 Lowest Gear......Page 251
4.3.2 Highest Gear......Page 257
4.3.3 Intermediate Gears......Page 265
4.3.4 Other Influencing Factors......Page 274
4.4 Gearbox Kinematics and Tooth Numbers......Page 275
4.4.1 Normal Gears......Page 277
4.4.2 Epicyclic Gear Sets......Page 280
4.5.1 Construction and Operation......Page 285
4.5.2 Dry Clutches......Page 287
4.5.3 Diaphragm Springs......Page 298
4.5.4 Clutch Engagement Dynamics......Page 309
4.6 Automatic Transmissions......Page 336
4.6.1 Conventional Automatics......Page 337
4.6.3 DCTs......Page 340
4.7 CVTs......Page 344
4.7.1 Classification......Page 346
4.7.2 Friction CVTs......Page 347
4.7.3 Ratcheting CVTs......Page 349
4.7.4 Non-Mechanical CVTs......Page 350
4.7.5 Idling and Launch......Page 352
4.9 Review Questions......Page 353
4.10 Problems......Page 354
References......Page 361
5.1 Introduction......Page 363
5.2.1 BSFC Maps......Page 364
5.2.2 BSFC and Engine Efficiency......Page 366
5.3 Driving Cycles......Page 367
5.3.1 Typical Driving Cycles......Page 368
5.3.2 Calculations......Page 370
5.3.3 Vehicle Tests......Page 372
5.4 Vehicle Fuel Consumption......Page 373
5.4.1 Map-free Fuel Consumption......Page 374
5.4.2 Map-based Fuel Consumption......Page 378
5.5 Shifting Effects......Page 382
5.5.1 Effect of Shifting on EOP......Page 383
5.5.2 Efficient Operating Points......Page 386
5.6.1 Solution Methodologies......Page 391
5.6.2 ADVISOR®......Page 392
5.7.2 Driver’s Intentions......Page 393
5.7.4 Controller......Page 394
5.7.5 Multigear Transmission Concept......Page 395
5.8.1 Powertrain Component Improvements......Page 396
5.8.2 Lightweight Vehicles......Page 397
5.8.3 Engine......Page 398
5.8.4 Transmission......Page 399
5.9 Conclusion......Page 400
5.11 Problems......Page 401
References......Page 406
6.2 Modelling Driveline Dynamics......Page 409
6.2.1 Modelling Methods......Page 410
6.2.3 Software Use......Page 412
6.3.1 The Engine......Page 413
6.3.2 The Clutch......Page 414
6.3.3 The Transmission......Page 415
6.3.5 The Differential......Page 416
6.3.6 The Wheel......Page 418
6.4.3 Rigid Body Model......Page 419
6.4.4 Driveline with Clutch Compliance......Page 421
6.4.5 Driveline with Driveshaft Compliance......Page 422
6.4.6 Driveline with Clutch and Driveshaft Compliances......Page 423
6.5 Analysis......Page 424
6.5.1 Effect of Clutch Compliance......Page 425
6.5.2 Effect of Driveshaft Compliance......Page 430
6.5.3 Effect of Clutch and Driveshaft Compliances......Page 433
6.5.4 Frequency Responses......Page 437
6.6 Conclusion......Page 440
6.8 Problems......Page 441
Further Reading......Page 445
References......Page 446
7.2 Types of Hybrid Electric Vehicles......Page 447
7.2.1 Basic Classification......Page 448
7.2.2 Basic Modes of Operation......Page 450
7.2.3 Other Derivatives......Page 451
7.2.4 Degree of Hybridization......Page 454
7.3 Power Split Devices......Page 455
7.3.1 Simple PSD......Page 456
7.3.2 EM Compound PSD......Page 468
7.4 HEV Component Characteristics......Page 473
7.4.2 Electric Machines......Page 474
7.4.3 The Battery......Page 479
7.5 HEV Performance Analysis......Page 487
7.5.1 Series HEV......Page 488
7.5.2 Parallel HEV......Page 492
7.6.1 General Considerations......Page 496
7.6.2 Sizing for Performance......Page 497
7.6.3 Optimum Sizing......Page 520
7.7 Power Management......Page 522
7.7.1 Control Potential......Page 523
7.7.2 Control......Page 528
7.9 Review Questions......Page 529
7.10 Problems......Page 530
References......Page 532
A.2 Standard Elements......Page 533
A.2.2 Passive Elements......Page 534
A.2.3 Two Port Elements......Page 536
A.2.4 Junctions......Page 538
A.3 Constructing Bond Graphs......Page 539
A.4.1 Causality......Page 542
A.4.2 Assignment Procedure......Page 543
A.4.3 Bond Graph Numbering......Page 544
A.4.5 Bond Graph Simplifications......Page 545
A.4.6 Derivation of Equations of Motion......Page 546
Index......Page 551