Vector and tensor analysis

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): Brand L.
Publisher: Wiley
Year: 1947

Language: English
Pages: 455
Tags: Математика;Векторный и тензорный анализ;

Title Page......Page 3
Copyright Page......Page 4
Dedication......Page 5
PREFACE......Page 7
CONTENTS......Page 11
1. Scalars and Vectors......Page 17
2. Addition of Vectors......Page 19
3. Subtraction of Vectors......Page 21
4. Multiplication of Vectors by Numbers......Page 22
5. Linear Dependence......Page 23
6. Collinear Points......Page 24
7. Coplanar Points......Page 28
8. Linear Relations Independent of the Origin.......Page 34
9. Centroid......Page 35
10. Barycentric Coordinates......Page 39
12. Base Vectors......Page 40
13. Rectangular Components......Page 42
15. Scalar Product......Page 45
16. Vector Product......Page 50
17. Vector Areas......Page 53
18. Vector Triple Product......Page 56
19. Scalar Triple Product......Page 57
20. Products of Four Vectors......Page 59
22. Spherical Trigonometry......Page 60
23. Reciprocal Bases......Page 62
24. Components of a Vector......Page 64
25. Vector Equations......Page 66
26. Homogeneous Coordinates......Page 67
27. Line Vectors and Moments......Page 71
28. Summary: Vector Algebra......Page 73
Problems......Page 75
29. Dual Vectors......Page 79
30. Dual Numbers......Page 80
31 Motors......Page 81
32. Motor Sum......Page 83
33. Scalar Product......Page 84
34. Motor Product......Page 86
35. Dual Triple Product......Page 88
36. Motor Identities......Page 89
37. Reciprocal Sets of Motors......Page 90
38. Statics......Page 91
39. Null System......Page 94
40. Summary: Motor Algebra......Page 96
Problems......Page 98
41. Derivative of a Vector......Page 100
42. Derivatives of Sums and Products......Page 102
43. Space Curves......Page 104
44. Unit Tangent Vector......Page 106
45. Frenet's Formulas......Page 108
46. Curvature and Torsion......Page 111
47. Fundamental Theorem......Page 113
48. Osculating Plane......Page 114
49. Center of Curvature......Page 115
50. Plane Curves......Page 116
51. Helices......Page 121
52. Kinematics of a Particle......Page 124
53. Relative Velocity......Page 126
54. Kinematics of a Rigid Body......Page 130
55. Composition of Velocities......Page 136
56. Rate of Change of a Vector......Page 137
57. Theorem of Coriolis......Page 139
58. Derivative of a Motor......Page 142
59. Summary: Vector Derivatives......Page 144
Problems......Page 146
60. Vector Functions of a Vector......Page 151
61. Dyadics......Page 152
62. Affine Point Transformation......Page 154
63. Complete and Singular Dyadics......Page 155
64. Conjugate Dyadics......Page 157
65. Product of Dyadics......Page 158
66. Idemfactor and Reciprocal......Page 160
67. The Dyadic 4) x v......Page 162
68. First Scalar and Vector Invariant......Page 163
69. Further Invariants......Page 164
70. Second and Adjoint Dyadic......Page 167
71. Invariant Directions......Page 169
72. Symmetric Dyadics......Page 172
73. The- Hamilton-Cayley Equation......Page 176
74. Normal Form of the General Dyadic......Page 178
75. Rotations and Reflections......Page 180
76. Basic Dyads......Page 182
77. Nonion Form......Page 183
78. Matric Algebra......Page 185
79. Differentiation of Dyadics......Page 187
81. Summary: Dyadic Algebra......Page 188
Problems......Page 190
82. Gradient of a Scalar......Page 194
83. Gradient of a Vector......Page 197
84. Divergence and Rotation......Page 199
85. Differentiation Formulas......Page 202
86. Gradient of a Tensor......Page 203
87. Functional Dependence......Page 206
88. Curvilinear Coordinates......Page 207
89. Orthogonal Coordinates......Page 210
90. Total Differential......Page 213
91. Irrotational Vectors......Page 214
92. Solenoidal Vectors......Page 217
93. Surfaces......Page 219
94. First Fundamental Form......Page 220
95. Surface Gradients......Page 222
96. Surface Divergence and Rotation......Page 223
97. Spatial and Surface Invariants......Page 225
98. Summary: Differential Invariants......Page 227
Problems......Page 229
99. Green's Theorem in the Plane......Page 232
100. Reduction of Surface to Line Integrals......Page 234
101. Alternative Form of Transformation......Page 237
102. Line Integrals......Page 238
103. Line Integrals on a Surface......Page 240
104. Field Lines of a Vector......Page 242
105. Pfaff's Problem......Page 246
106. Reduction of Volume to Surface Integrals......Page 249
107. Solid Angle......Page 252
108. Green's Identities......Page 253
109. Harmonic Functions......Page 255
110. Electric Point Charges......Page 257
111. Surface Charges......Page 258
112. Doublets and Double Layers......Page 259
113. Space Charges......Page 261
114. Heat Conduction......Page 263
115. Summary: Integral Transformations......Page 264
Problems......Page 266
116. Stress Dyadic......Page 269
117. Equilibrium of a Deformable Body......Page 271
119. Floating Body......Page 273
120. Equation of Continuity......Page 274
121. Eulerian Equation for a Fluid in Motion.......Page 276
122. Vorticity......Page 278
123. Lagrangian Equation of Motion......Page 279
124. Flow and Circulation......Page 282
125. Irrotational Motion......Page 283
126. Steady Motion......Page 284
127. Plane Motion......Page 286
128. Kutta-Joukowsky Formulas......Page 289
129. Summary: Hydrodynamics......Page 294
Problems......Page 296
130. Curvature of Surface Curves......Page 299
131. The Dyadic On......Page 301
132. Fundamental Forms......Page 305
134. The Field Dyadic......Page 309
135. Geodesics......Page 313
136. Geodesic Field......Page 315
137. Equations of Codazzi and Gauss......Page 316
138. Lines of Curvature......Page 318
139. Total Curvature......Page 322
140. Bonnet's Integral Formula......Page 324
141. Normal Systems......Page 329
142. Developable Surfaces......Page 330
143. Minimal Surfaces......Page 332
144. Summary: Surface Geometry......Page 335
Problems......Page 337
145. The Summation Convention......Page 344
146. Determinants......Page 345
147. Contragredient Transformations......Page 348
148. Covariance and Contravariance......Page 350
149. Orthogonal Transformations......Page 352
150. Quadratic Forms......Page 353
152. Relations between Reciprocal Bases......Page 355
153. The Affine Group......Page 356
154. Dyadics......Page 358
155. Absolute Tensors......Page 359
156. Relative Tensors......Page 361
157. General Transformations......Page 362
159. Operations with Tensors......Page 366
160. Symmetry and Antisymmetry......Page 368
161. Kronecker Deltas......Page 369
162. Vector Algebra in Index Notation......Page 370
163. The Affine Connection......Page 372
164. Kinematics of a Particle......Page 375
165. Derivatives of e` and E......Page 376
166. Relation between Affine Connection and Metric Tensor......Page 377
167. Covariant Derivative......Page 378
168. Rules of Covariant Differentiation......Page 381
169. Riemannian Geometry......Page 382
170. Dual of a Tensor......Page 386
171. Divergence......Page 387
172. Stokes Tensor......Page 388
173. Curl......Page 390
175. Parallel Displacement......Page 392
176. Curvature Tensor......Page 396
177. Identities of Ricci and Bianchi......Page 400
178. Euclidean Geometry......Page 401
179. Surface Geometry in Tensor Notation......Page 404
180. Summary: Tensor Analysis......Page 408
Problems......Page 412
181. Quaternion Algebra......Page 419
182. Conjugate and Norm......Page 422
183. Division of Quaternions......Page 425
184. Product of Vectors......Page 426
185. Roots of a Quaternion......Page 428
186. Great Circle Arcs......Page 430
187. Rotations......Page 433
188. Plane Vector Analysis......Page 437
189. Summary: Quaternion Algebra......Page 442
Problems......Page 443
INDEX......Page 447