Unrestricted and finite model reasoning in class-based representation formalisms [PhD Thesis]

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): Diego Calvanese
Publisher: Universita di Roma “La Sapienza”
Year: 1996

Language: English
Pages: 155

1 Representing Structured Information 1
1.1 Semantic Networks and Frame Based Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Description Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Semantic Data Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Object-Oriented Data Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Goal of the Thesis and Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2 Representing Intensional Knowledge by L-Schemata 9
2.1 Syntax and Semantics of L-Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.1 The Core Language (L0, L−) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 Disjunction (LU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.3 Qualified Existential Quantification (LE) . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.4 Number Restrictions (LN, LF, LQ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.5 Inverse Attributes (LI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.6 General Negation (LC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.7 Arbitrary Links (LL, LD, LC, LV) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.8 Structured Objects (LO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.9 Achieving Maximum Expressivity (LT , LT −) . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 L-Schemata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.1 Cycles in L-Schemata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.2 Primitive L-Schemata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.3 Free L-Schemata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.4 Summary and Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 Schema Level Reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.1 Reasoning Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.2 Equivalence of Schemata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4 Finite versus Unrestricted Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3 Modeling Known Formalisms 29
3.1 Comparison with Description Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Modeling Frame Based Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.1 Syntax of Frame Based Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.2 Semantics of Frame Based Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.3 Relationship between Frame Based Systems and L-Schemata . . . . . . . . . . . . . . 32
3.3 Modeling Semantic Data Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.1 Syntax of the Entity-Relationship Model . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.2 Semantics of the Entity-Relationship Model . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.3 Relationship between ER-Schemata and L-Schemata . . . . . . . . . . . . . . . . . . . 37
3.4 Modeling Object-Oriented Data Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4.1 Syntax of an Object-Oriented Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4.2 Semantics of an Object-Oriented Model . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4.3 Relationship between Object-Oriented Schemata and L-Schemata . . . . . . . . . . . 43
4 Intrinsic Complexity of Reasoning 45
4.1 Complexity Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.1.1 Complete Problems for Complexity Classes . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 Lower Bounds by Direct Reductions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.2 Acyclic Primitive L0-Schemata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2.3 Acyclic Primitive LU-Schemata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.4 General Primitive L0-Schemata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3 Eliminating Qualified Existential Quantification . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.4 Undecidable L-Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5 Unrestricted Model Reasoning 67
5.1 Unrestricted Model Reasoning on Primitive LUNI-Schemata . . . . . . . . . . . . . . . . . . 67
5.1.1 Relaxation of a Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.1.2 Two-Way Deterministic Tree Structures . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.1.3 Expansion of Two Way Deterministic Tree Structures . . . . . . . . . . . . . . . . . . 71
5.1.4 Upper Bounds for Unrestricted Model Reasoning . . . . . . . . . . . . . . . . . . . . . 75
5.2 Unrestricted Model Reasoning on Free LT −-Schemata . . . . . . . . . . . . . . . . . . . . . . 76
5.2.1 Reduction from LT − to LCQIL¢ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2.2 Reduction from LCQIL¢ to LCFIL¢ . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2.3 Decidability of LCFIL¢ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.2.4 Upper Bounds for Unrestricted Model Reasoning . . . . . . . . . . . . . . . . . . . . . 86
6 Finite Model Reasoning 87
6.1 Systems of Linear Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.1.1 Acceptable Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.2 Finite Model Reasoning on Primitive LUNI-Schemata . . . . . . . . . . . . . . . . . . . . . . 90
6.2.1 Normalization of a Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.2.2 Expansion of a Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.2.3 System of Inequalities Corresponding to a Schema . . . . . . . . . . . . . . . . . . . . 95
6.2.4 Characterization of Finite Class Consistency . . . . . . . . . . . . . . . . . . . . . . . 96
6.2.5 Upper Bounds for Finite Model Reasoning . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.3 Towards an Efficient Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.3.1 Strategies for Constructing the Expansion . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.3.2 Special Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.4 Finite Model Reasoning on Free LCNI-Schemata . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.4.1 Normalization of a Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.4.2 Expansion of a Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.4.3 Biexpansion of a Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.4.4 System of Inequalities Corresponding to a Schema . . . . . . . . . . . . . . . . . . . . 114
6.4.5 Characterization of Finite Class Consistency . . . . . . . . . . . . . . . . . . . . . . . 115
6.4.6 Upper Bounds for Finite Model Reasoning . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
A Finite Automata on Infinite Objects 121
A.1 Sequential Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
A.2 Tree Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
B Propositional Dynamic Logics 125
B.1 Syntax and Semantics of PDLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
B.2 The Correspondence between L-Languages and PDLs . . . . . . . . . . . . . . . . . . . . . . 126
B.3 Extensions and Variants of PDLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
B.3.1 Extensions of cpdl (rcpdl, qcpdl, fcpdl) . . . . . . . . . . . . . . . . . . . . . . . 127
B.3.2 Variants of PDLs Described by Automata (APDLs) . . . . . . . . . . . . . . . . . . . 128
B.4 Additional Notions about PDLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
B.4.1 Fischer-Ladner Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
B.4.2 Tree Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Bibliography 131
List of Publications 141