Universal Artificial Intelligence: Sequential Decisions Based On Algorithmic Probability

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book presents sequential decision theory from a novel algorithmic information theory perspective. While the former is suited for active agents in known environment, the latter is suited for passive prediction in unknown environment. The book introduces these two well-known but very different ideas and removes the limitations by unifying them to one parameter-free theory of an optimal reinforcement learning agent embedded in an arbitrary unknown environment. Most AI problems can easily be formulated within this theory, which reduces the conceptual problems to pure computational problems. Considered problem classes include sequence prediction, strategic games, function minimization, reinforcement and supervised learning. The discussion includes formal definitions of intelligence order relations, the horizon problem and relations to other approaches to AI. One intention of this book is to excite a broader AI audience about abstract algorithmic information theory concepts, and conversely to inform theorists about exciting applications to AI.

Author(s): Marcus Hutter
Series: Texts in Theoretical Computer Science. An EATCS Series
Publisher: Springer
Year: 2005

Language: English
Pages: 293