Unit Operations in Food Engineering (Food Preservation Technology)

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

In order to successfully produce food products with maximum quality, each stage of processing must be well-designed. Unit Operations in Food Engineering systematically presents the basic information necessary to design food processes and the equipment needed to carry them out. It covers the most common food engineering unit operations in detail, including guidance for carrying out specific design calculations. Initial chapters present transport phenomena basics for momentum, mass, and energy transfer in different unit operations. Later chapters present detailed unit operation descriptions based on fluid transport and heat and mass transfer. Every chapter concludes with a series of solved problems as examples of applied theory.

Author(s): Albert Ibarz, Gustavo V. Barbosa-Canovas
Edition: 1
Publisher: CRC Press
Year: 2002

Language: English
Pages: 884

tx69299fm.pdf......Page 2
Unit Operations in Food Engineering......Page 4
Preface......Page 7
Acknowledgments......Page 8
Authors......Page 9
CONTENTS......Page 10
References......Page 0
1.2 Food Process Engineering......Page 23
1.4 Flow Charts and Description of Some Food Processes......Page 24
1.6 Discontinuous, Continuous, and Semicontinuous Operations......Page 25
1.7 Unit Operations: Classification......Page 28
1.7.1 Momentum Transfer Unit Operations......Page 29
1.7.4 Simultaneous Mass–Heat Transfer Unit Operations......Page 30
1.8 Mathematical Setup of the Problems......Page 31
2.1.1 Absolute Unit Systems......Page 33
2.1.3 Engineering Unit Systems......Page 34
2.1.4 International Unit System (IS)......Page 35
2.1.5 Thermal Units......Page 36
2.1.6 Unit Conversion......Page 37
2.2 Dimensional Analysis......Page 39
2.2.1 Buckingham’s pi Theorem......Page 40
2.2.2.1 Buckingham’s Method......Page 42
2.2.2.3 Method of Differential Equations......Page 44
2.3 Similarity Theory......Page 45
2.3.1 Geometric Similarity......Page 46
2.3.2.3 Dynamic Similarity......Page 47
2.2......Page 52
2.3......Page 54
2.4......Page 56
Rayleigh’s Method......Page 58
Buckingham’s Method......Page 59
2.6......Page 61
3.1 Historic Introduction......Page 65
3.2 Transport Phenomena: Definition......Page 66
3.3 Circulation Regimes: Reynolds’ Experiment......Page 67
3.4 Mechanisms of Transport Phenomena......Page 70
3.4.1 Mass Transfer......Page 71
3.4.4 Velocity Laws......Page 72
3.4.5 Coupled Phenomena......Page 73
4.2 Momentum Transport: Newton’s Law of Viscosity......Page 75
4.3 Energy Transmission: Fourier’s Law of Heat Conduction......Page 77
4.4 Mass Transfer: Fick’s Law of Diffusion......Page 79
4.5 General Equation of Velocity......Page 83
5.2 Properties of Humid Air......Page 86
5.3.1 Psychrometric Chart…......Page 91
5.3.2 Psychrometric Chart X – T......Page 95
5.4 Wet Bulb Temperature......Page 96
5.5 Adiabatic Saturation of Air......Page 98
Solutions......Page 101
5.3......Page 102
5.4......Page 105
5.5......Page 106
6.1 Introduction......Page 109
6.2 Stress and Deformation......Page 110
6.3 Elastic Solids and Newtonian Fluids......Page 113
6.4 Viscometric Functions......Page 115
6.5 Rheological Classification of Fluid Foods......Page 116
6.6 Newtonian Flow......Page 117
6.7.1 Time Independent Flow......Page 119
6.7.2 Time Dependent Flow......Page 123
6.8 Viscoelasticity......Page 127
6.9 Effect of Temperature......Page 133
6.10.1 Structural Theories of Viscosity......Page 134
6.10.2 Viscosity of Solutions......Page 135
6.10.3 Combined Effect: Temperature–Concentration......Page 137
6.11.3 Kelvin’s Model......Page 138
6.11.4 Maxwell’s Model......Page 140
6.12 Rheological Measures in Semiliquid Foods......Page 141
6.12.1.2 Concentric Cylinders Viscometers......Page 143
6.12.1.3 Plate–Plate and Cone–Plate Viscometers......Page 146
Viscous Heating......Page 148
End and Edge Effects......Page 149
6.12.1.5 Oscillating Flow......Page 150
6.12.1.7 Back Extrusion Viscometry......Page 152
6.12.1.8 Squeezing Flow Viscometry......Page 155
6.12.2.1 Adams Consistometer......Page 156
6.12.3 Imitative Methods......Page 157
6.1......Page 158
6.2......Page 159
6.3......Page 160
6.4......Page 161
7.1 Introduction......Page 163
7.2.1 Criteria for Laminar Flow......Page 164
7.2.2 Velocity Profiles......Page 167
7.2.2.1.1 Newtonian Fluids......Page 169
7.2.2.1.2 Non-Newtonian Fluids......Page 170
7.2.2.2 Turbulent Regime......Page 173
7.2.2.3 Flow in Noncylindrical Piping......Page 175
7.2.3 Universal Velocity Profiles......Page 177
7.3.1 Mass Balance......Page 180
7.3.2 Momentum Balance......Page 181
Enthalpy…......Page 182
Kinetic Energy…......Page 183
Potential Energy…......Page 184
7.3.4 Mechanical Energy Balance......Page 185
7.4.1 Friction Factors......Page 186
7.4.2 Calculation of Friction Factors......Page 187
7.4.2.1 Flow under Laminar Regime......Page 188
7.4.2.2 Flow under Turbulent Regime......Page 190
7.4.3 Minor Mechanical Energy Losses......Page 193
7.4.3.2 Friction Losses Factors......Page 195
7.5.1 Calculation of Velocity and Circulation Flow Rate......Page 199
7.5.2 Calculation of Minimum Diameter of Piping......Page 201
7.5.3.1 Parallel Piping Systems......Page 202
7.5.3.2 Piping in Series......Page 203
7.5.3.3 Branched Piping......Page 204
7.6.1 Characteristics of a Pump......Page 206
7.6.1.1 Suction Head......Page 207
7.6.1.3 Total Head of a Pump......Page 208
7.6.1.4 Net Positive Suction Head: Cavitation......Page 209
7.6.2 Installation Point of a Pump......Page 210
7.6.5 Types of Pumps......Page 211
7.1......Page 213
7.2......Page 215
7.3......Page 217
7.4......Page 219
7.5......Page 220
7.6......Page 222
8.2 Darcy’s Law: Permeability......Page 224
8.3.1 Specific Surface......Page 225
8.3.2 Porosity......Page 226
8.4.1 Laminar Flow: Equation of Kozeny–Carman......Page 229
8.4.2 Turbulent Flow: Equation of Burke–Plummer......Page 231
8.4.3 Laminar-Turbulent Global Flow: Equations of Ergun and Chilton–Colburn......Page 232
8.5 Fluidization......Page 235
8.5.1 Minimal Velocity of Fluidization......Page 237
8.5.1.2 Turbulent Flow......Page 238
8.5.2 Minimal Porosity of Fluizidation......Page 239
8.5.3 Bed Height......Page 240
8.1......Page 241
8.2......Page 242
8.3......Page 244
8.4......Page 245
8.5......Page 247
8.6......Page 250
8.7......Page 252
9.2 Fundamentals of Filtration......Page 254
9.2.1 Resistance of the Filtering Cake......Page 255
9.2.2 Filtering Medium Resistance......Page 258
9.2.3 Total Filtration Resistance......Page 259
9.3 Filtration at Constant Pressure Drop......Page 260
9.4 Filtration at Constant Volumetric Flow......Page 263
9.5 Cake Washing......Page 264
9.7 Optimal Filtration Conditions at Constant Pressure......Page 267
9.8 Rotary Vacuum Disk Filter......Page 269
9.1......Page 272
9.2......Page 273
9.3......Page 275
9.4......Page 278
9.5......Page 281
10.1 Introduction......Page 284
10.1.1 Stages of Mass Transfer......Page 286
10.1.2 Polarization by Concentration......Page 288
10.2.2 Simultaneous Diffusion and Capillary Flow Model......Page 289
10.2.3 Simultaneous Viscous and Friction Flow Model......Page 290
10.2.4 Preferential Adsorption and Capillary Flow Model......Page 291
10.2.5 Model Based on the Thermodynamics of Irreversible Processes......Page 292
10.3.1 Hydraulic Model......Page 293
10.3.2 Osmotic Model......Page 298
10.4.1 Mathematical Model......Page 299
10.4.2 Polarization Layer by Concentration......Page 302
10.4.3.1 Influence of Pressure......Page 303
10.4.3.2 Effect of Temperature......Page 304
10.5 Ultrafiltration......Page 306
10.5.1 Mathematical Model......Page 307
10.5.2 Concentration Polarization Layer......Page 308
10.5.3.1 Influence of Pressure......Page 310
10.5.3.2 Effect of Temperature......Page 311
10.6 Design of Reverse Osmosis and Ultrafiltration Systems......Page 312
10.6.1 First Design Method......Page 313
10.6.2 Second Design Method......Page 316
10.7.1 Single Stage......Page 317
10.7.2 Simple Stages in Series......Page 318
10.7.3 Two Stages with Recirculation......Page 319
10.1......Page 320
10.2......Page 321
10.3......Page 324
10.4......Page 326
11.1 Thermal Conductivity......Page 328
11.2 Specific Heat......Page 330
11.3 Density......Page 332
11.4 Thermal Diffusivity......Page 335
11.1......Page 338
12.1.1 Rectangular Coordinates......Page 340
12.1.2 Cylindrical Coordinates......Page 343
12.2 Heat Conduction under Steady Regime......Page 344
12.2.1 Monodimensional Heat Conduction......Page 345
12.2.1.1 Flat Wall......Page 346
12.2.1.2 Cylindrical Layer......Page 348
12.2.1.3 Spherical Layer......Page 351
12.2.2 Bidimensional Heat Conduction......Page 353
12.2.2.1 Liebman’s method......Page 355
12.2.3 Tridimensional Heat Conduction......Page 356
12.3.1 Monodimensional Heat Conduction......Page 358
12.3.1.1 Analytical Methods......Page 359
12.3.1.2 Numerical and Graphical Methods......Page 366
12.3.2 Bi- and Tridimensinal Heat Conduction: Newman’s Rule......Page 370
12.1......Page 371
12.2......Page 373
12.3......Page 375
12.4......Page 377
12.6......Page 379
12.7......Page 381
12.8......Page 383
13.2.1 Individual Coefficients......Page 385
13.2.1.1 Natural Convection......Page 388
13.2.1.2.1 Fluids inside Pipes......Page 389
13.2.1.2.2 Fluids Flowing on the Exterior of Solids......Page 390
13.2.1.3 Convection in Non-Newtonian Fluids......Page 391
13.2.2 Global Coefficients......Page 392
13.3.1.1 Operation in Parallel......Page 396
13.3.1.2 Countercurrent Operation......Page 400
13.3.2 Calculation of Individual Coefficients......Page 401
13.4 Shell and Tube Heat Exchangers......Page 402
13.4.1 Design Characteristics......Page 403
13.4.2 Calculation of the True Logarithmic Mean Temperature Difference......Page 406
13.4.3 Calculation of Individual Coefficients......Page 407
13.4.3.1 Coefficients for the Inside of the Tubes......Page 408
13.4.3.2 Coefficients on the Side of the Shell......Page 410
13.4.4.2 Head Losses on the Shell Side......Page 413
13.5 Plate-Type Heat Exchangers......Page 414
13.5.1 Design Characteristics......Page 417
13.5.2 Number of Transfer Units......Page 419
13.5.3 Calculation of the True Logarithmic Mean Temperature Difference......Page 420
13.5.4 Calculation of the Heat Transfer Coefficients......Page 421
13.5.5 Calculation of Head Losses......Page 424
13.5.6 Design Procedure......Page 425
13.6 Extended Surface Heat Exchangers......Page 427
13.6.1 Mathematical Model......Page 429
13.6.2 Efficiency of a Fin......Page 430
13.6.3 Calculation of Extended Surface Heat Exchangers......Page 432
13.7 Scraped Surface Heat Exchangers......Page 433
13.8.1 Individual Coefficient inside the Vessel......Page 435
13.9 Heat Exchange Efficiency......Page 436
13.1......Page 443
13.2......Page 446
13.3......Page 451
13.4......Page 455
13.5......Page 458
13.6......Page 461
13.7......Page 467
13.8......Page 471
13.9......Page 477
13.10......Page 482
14.1 Introduction......Page 484
14.2.2 Wien’s Law......Page 485
14.3.1 Total Properties......Page 486
14.3.2 Monochromatic Properties: Kirchhoff’s Law......Page 488
14.3.3 Directional Properties......Page 489
14.4.1 Definition and Calculation......Page 491
14.4.2 Properties of View Factors......Page 492
14.5 Exchange of Radiant Energy between Surfaces Separated by Nonabsorbing Media......Page 495
14.5.2 Radiation between a Surface and a Black Surface Completely Surrounding It......Page 496
14.5.3 Radiation between Black Surfaces in the Presence of Refractory Surfaces: Refractory Factor......Page 497
14.5.4 Radiation between Nonblack Surfaces: Gray Factor......Page 498
14.6 Coefficient of Heat Transfer by Radiation......Page 499
14.7 Simultaneous Heat Transfer by Convection and Radiation......Page 501
14.1......Page 502
14.2......Page 503
14.3......Page 504
14.4......Page 506
15.2 Thermal Death Rate......Page 508
15.2.1 Decimal Reduction Time D......Page 509
15.2.3 Thermal Death Time Constant z......Page 510
15.2.4 Reduction Degree n......Page 514
15.2.5 Thermal Death Time F......Page 516
15.2.6 Cooking Value C......Page 517
15.2.7 Effect of Temperature on Rate and Thermal Treatment Parameters......Page 518
15.3.1 Heat Penetration Curve......Page 519
15.3.2.1 Graphical Method......Page 521
15.3.2.2 Mathematical Method......Page 523
15.4 Thermal Treatment in Aseptic Processing......Page 525
15.4.2 Dispersion of Residence Times......Page 528
15.4.3 Distribution Function E under Ideal Behavior......Page 530
15.4.4 Distribution Function E under Nonideal Behavior......Page 533
15.4.5 Application of the Distribution Models to Continuous Thermal Treatment......Page 536
15.1......Page 538
15.2......Page 539
15.3......Page 541
15.4......Page 542
15.5......Page 544
15.6......Page 546
15.7......Page 547
15.8......Page 548
16.1 Freezing......Page 552
16.2 Freezing Temperature......Page 554
16.2.1 Unfrozen Water......Page 555
16.2.2 Equivalent Molecular Weight of Solutes......Page 557
16.3.2 Specific Heat......Page 558
16.3.3 Thermal Conductivity......Page 559
16.4 Freezing Time......Page 560
16.5 Design of Freezing Systems......Page 566
16.6 Refrigeration......Page 567
16.7 Refrigeration Mechanical Systems......Page 568
16.8 Refrigerants......Page 572
16.9 Multipressure Systems......Page 573
16.9.1 Systems with Two Compressors and One Evaporator......Page 576
16.9.2 Systems with Two Compressors and Two Evaporators......Page 578
16.1......Page 580
16.2......Page 581
16.3......Page 585
16.4......Page 587
17.1 Introduction......Page 589
17.2 Mixing of Two Air Streams......Page 590
17.3.1 Continuous Dryer without Recirculation......Page 591
17.3.2 Continuous Dryer with Recirculation......Page 592
17.4.1 Drying Process......Page 593
17.4.2 Constant Rate Drying Period......Page 596
17.4.3.1 Diffusion Theory......Page 598
17.5 Chamber and Bed Dryers......Page 600
17.5.1 Components of a Dryer......Page 601
17.5.2.1 Discontinuous Dryers......Page 603
17.5.2.2 Discontinuous Dryers with Air Circulation through the Bed......Page 605
17.5.2.3 Continuous Dryers......Page 608
17.6 Spray Drying......Page 610
17.6.1 Pressure Nozzles......Page 611
17.6.2 Rotary Atomizers......Page 614
17.6.3 Two-Fluid Pneumatic Atomizers......Page 616
17.6.5 Heat and Mass Balances......Page 618
17.7 Freeze Drying......Page 620
17.7.3 Simultaneous Heat and Mass Transfer......Page 623
17.8.1 Osmotic Dehydration......Page 630
17.8.2 Solar Drying......Page 631
17.8.4 Microwave Drying......Page 632
17.8.5 Fluidized Bed Dryers......Page 633
17.1......Page 634
17.2......Page 635
17.4......Page 636
17.5......Page 638
18.1 Introduction......Page 640
18.2 Heat Transfer in Evaporators......Page 641
18.2.1 Enthalpies of Vapors and Liquids......Page 642
18.2.2 Boiling Point Rise......Page 644
18.2.3 Heat Transfer Coefficients......Page 646
18.3 Single Effect Evaporators......Page 647
18.4.1.1 Mechanical Compression......Page 649
18.4.1.2 Thermocompression......Page 651
18.4.2 Thermal Pump......Page 652
18.4.3 Multiple Effect......Page 653
18.5.1.1 Parallel Feed......Page 655
18.5.1.4 Mixed Feed......Page 657
18.5.2 Mathematical Model......Page 658
18.5.3 Resolution of the Mathematical Model......Page 660
18.5.4 Calculation Procedure......Page 661
18.5.4.1 Iterative Method when there is Boiling Point Rise......Page 662
18.5.4.2 Iterative Method when there is No Boiling Point Rise......Page 663
18.6.1.2 Short Tube Horizontal Evaporator......Page 664
18.6.1.3 Short Tube Vertical Evaporator......Page 665
18.6.2 Forced Circulation Evaporators......Page 666
18.6.3 Long Tube Evaporators......Page 667
18.1......Page 669
18.2......Page 673
18.3......Page 679
19.2 Liquid–Vapor Equilibrium......Page 686
19.2.1 Partial Pressures: Laws of Dalton, Raoult, and Henry......Page 689
19.2.2 Relative Volatility......Page 691
19.2.3 Enthalpy Composition Diagram......Page 692
19.3.1 Simple Distillation......Page 693
19.3.2 Flash Distillation......Page 695
19.4 Continuous Rectification of Binary Mixtures......Page 697
19.4.1.1 Mathematical Model......Page 699
19.4.1.2 Solution of the Mathematical Model: Method of McCabe–Thiele......Page 702
19.4.2.1 Minimum Reflux Relationship......Page 706
19.4.3 Multiple Feed Lines and Lateral Extraction......Page 709
19.4.4 Plate Efficiency......Page 712
19.4.5 Diameter of the Column......Page 713
19.4.6 Exhaust Columns......Page 716
19.5.1 Operation with Constant Distillate Composition......Page 717
19.5.2 Operation under Constant Reflux Ratio......Page 720
19.6 Steam Distillation......Page 721
19.1......Page 723
19.2......Page 724
19.3......Page 726
19.4......Page 729
19.5......Page 732
19.6......Page 734
20.1 Introduction......Page 737
20.2 Liquid–Gas Equilibrium......Page 738
20.3 Absorption Mechanisms......Page 740
20.3.2 Basic Mass Transfer Equations......Page 741
20.3.2.1 Diffusion in the Gas Phase......Page 742
20.3.3 Absorption Velocity......Page 743
20.4.1 Selection of the Solvent......Page 746
20.4.3 Mass Balance......Page 747
20.4.4 Enthalpy Balance......Page 750
20.4.5 Selection of Packing Type: Calculation of the Column Diameter......Page 752
20.4.5.1 Packing Static Characteristics......Page 754
20.4.5.2 Packing Dynamic Characteristics......Page 755
20.4.5.3 Determination of Flooding Velocity......Page 756
20.4.5.4 Determination of Packing Type......Page 758
20.4.6 Calculation of the Column Height......Page 759
20.4.6.1 Concentrated Mixtures......Page 760
20.4.6.2 Diluted Mixtures......Page 763
20.4.6.3 Calculation of the Number of Transfer Units......Page 765
20.4.6.4 Calculation of the Height of the Transfer Unit......Page 768
20.5 Plate Columns......Page 769
20.1......Page 772
20.2......Page 773
20.3......Page 775
20.4......Page 778
21.1 Introduction......Page 786
21.2 Solid–Liquid Equilibrium......Page 787
21.2.1 Retention of Solution and Solvent......Page 789
21.2.2.1 Triangular Diagram......Page 790
21.2.2.2 Rectangular Diagram......Page 794
21.3.1 Single Stage......Page 795
21.3.2 Multistage Concurrent System......Page 799
21.3.3 Continuous Countercurrent Multistage System......Page 805
21.4 Solid–Liquid Extraction Equipment......Page 812
21.4.1 Batch Percolators......Page 813
21.4.3 Continuous Percolators......Page 814
21.4.4 Other Types of Extractors......Page 817
21.5 Applications to the Food Industry......Page 819
21.1......Page 823
21.2......Page 825
21.3......Page 829
21.4......Page 832
22.1.2 Ionic Exchange......Page 835
22.2.1 Adsorption Equilibrium......Page 836
22.2.2 Ionic Exchange Equilibrium......Page 839
22.3.1 Adsorption Kinetics......Page 840
22.4 Operation by Stages......Page 841
22.4.1 Single Simple Contact......Page 842
22.4.2 Repeated Simple Contact......Page 843
22.4.3 Countercurrent Multiple Contact......Page 844
22.5 Movable-Bed Columns......Page 846
22.6 Fixed-Bed Columns......Page 848
22.6.2 Rosen’s Deductive Method......Page 849
22.6.3 The Exchange Zone Method......Page 850
22.6.3.1 Calculation of Height of Exchange Zone in an Adsorption Column......Page 854
22.6.3.2 Calculation of Height of Exchange Zone in an Ionic Exchange Column......Page 856
22.1......Page 858
22.2......Page 861
22.3......Page 863
References......Page 866
Appendix......Page 876