Understanding Solids: The Science of Materials

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

The second edition of a modern introduction to the chemistry and physics of solids. This textbook takes a unique integrated approach designed to appeal to both science and engineering students

Edition: 2nd
Publisher: Wiley
Year: 2013

Language: English
Pages: 1166
City: New York
Tags: Физика;Физика твердого тела;

Understanding Solids: The Science of Materials......Page 1
Contents......Page 9
Preface to the Second Edition......Page 19
Preface to the First Edition......Page 21
Part 1: Structures and microstructures......Page 23
1.1.1 The quantum mechanical description......Page 25
1.1.2 The energy of the electron......Page 26
1.1.4 Orbital shapes......Page 27
1.2.2 Electron spin and electron configuration......Page 29
1.2.3 The periodic table......Page 31
1.3.2 Terms and term symbols......Page 33
1.3.3 Levels......Page 35
1.3.4 Electronic energy level calculations......Page 36
Further reading......Page 37
Problems and exercises......Page 38
2.1.1 Ions......Page 41
2.1.2 Ionic size and shape......Page 42
2.1.3 Lattice energies......Page 43
2.1.4 Atomistic simulation......Page 45
2.2.1 Valence bond theory......Page 46
2.2.2 Molecular orbital theory......Page 52
2.3 Metallic bonding and energy bands......Page 57
2.3.1 Molecular orbitals and energy bands......Page 58
2.3.2 The free electron gas......Page 59
2.3.3 Energy bands......Page 62
2.3.4 Properties of metals......Page 63
2.3.5 Bands in ionic and covalent solids......Page 65
2.3.6 Computation of properties......Page 66
Further reading......Page 67
Problems and exercises......Page 68
3.1 Weak chemical bonds......Page 71
3.2.2 Crystalline solids......Page 74
3.2.3 Quasicrystals......Page 75
3.2.4 Non-crystalline solids......Page 76
3.2.6 Nanoparticles and nanostructures......Page 77
3.3 The development of microstructures......Page 79
3.3.2 Processing......Page 80
3.4.1 Point defects in crystals of elements......Page 82
3.4.2 Solid solutions......Page 83
3.4.3 Schottky defects......Page 84
3.4.4 Frenkel defects......Page 85
3.4.5 Non-stoichiometric compounds......Page 86
3.4.6 Point defect notation......Page 88
3.5.1 Edge dislocations......Page 90
3.5.4 Planar defects......Page 91
3.5.5 Volume defects: precipitates......Page 92
Problems and exercises......Page 95
4.1.1 One-component (unary) systems......Page 99
4.1.2 The phase rule for one-component (unary) systems......Page 101
4.2.1 Two-component (binary) systems......Page 102
4.2.3 Simple binary diagrams: nickel–copper as an example......Page 103
4.2.4 Binary systems containing a eutectic point: tin–lead as an example......Page 105
4.2.5 Intermediate phases and melting......Page 109
4.3.1 The iron–carbon phase diagram......Page 110
4.3.3 Invariant points......Page 111
4.4 Ternary systems......Page 112
4.5 Calculation of phase diagrams: CALPHAD......Page 115
Problems and exercises......Page 116
5.1.1 Crystal lattices......Page 123
5.1.2 Crystal systems and crystal structures......Page 124
5.1.3 Symmetry and crystal classes......Page 126
5.1.4 Crystal planes and Miller indices......Page 128
5.1.5 Hexagonal crystals and Miller-Bravais indices......Page 131
5.1.6 Directions......Page 132
5.1.7 Crystal geometry and the reciprocal lattice......Page 134
5.2.1 Single crystal X-ray diffraction......Page 136
5.2.2 Powder X-ray diffraction and crystal identification......Page 137
5.3.1 Unit cells, atomic coordinates and nomenclature......Page 140
5.3.2 The density of a crystal......Page 141
5.3.4 The body-centred cubic (A2) structure......Page 143
5.3.6 The diamond (A4) structure......Page 144
5.3.8 The halite (rock salt, sodium chloride, B1) structure......Page 145
5.3.9 The spinel (H11) structure......Page 147
5.4.1 Sphere packing......Page 148
5.4.2 Ionic structures in terms of anion packing......Page 150
5.4.3 Polyhedral representations......Page 151
Problems and exercises......Page 153
Part 2: Classes of Materials......Page 159
6.1 Metals......Page 161
6.1.1 The crystal structures of pure metals......Page 162
6.1.2 Metallic radii......Page 163
6.1.3 Alloy solid solutions......Page 164
6.1.4 Metallic glasses......Page 167
6.1.5 The principal properties of metals......Page 168
6.2.1 Bonding and structure of silicate ceramics......Page 169
6.2.2 Some non-silicate ceramics......Page 171
6.2.3 The preparation and processing of ceramics......Page 174
6.3 Silicate glasses......Page 176
6.3.1 Bonding and structure of silicate glasses......Page 177
6.3.2 Glass deformation......Page 179
6.3.3 Strengthened glass......Page 181
6.3.4 Glass-ceramics......Page 182
6.4 Polymers......Page 183
6.4.1 Polymer formation......Page 184
6.4.2 Microstructures of polymers......Page 187
6.4.3 Production of polymers......Page 192
6.4.4 Elastomers......Page 195
6.4.5 The principal properties of polymers......Page 197
6.5.2 Metal-matrix composites......Page 199
6.5.4 Cement and concrete......Page 200
Further reading......Page 203
Problems and exercises......Page 204
Part 3: Reactions and transformations......Page 211
7.1 Self-diffusion, tracer diffusion and tracer impurity diffusion......Page 213
7.2 Non-steady-state diffusion......Page 216
7.4 Temperature variation of diffusion coefficient......Page 217
7.5 The effect of impurities......Page 218
7.6 Random walk diffusion......Page 219
7.7 Diffusion in solids......Page 220
7.8 Self-diffusion in one dimension......Page 221
7.9 Self-diffusion in crystals......Page 223
7.10 The Arrhenius equation and point defects......Page 224
7.11 Correlation factors for self-diffusion......Page 226
7.12.1 Ionic conductivity in solids......Page 227
7.12.2 The relationship between ionic conductivity and diffusion coefficient......Page 230
Problems and exercises......Page 231
8.1.1 Sintering and reaction......Page 235
8.1.2 The driving force for sintering......Page 237
8.2 First-order and second-order phase transitions......Page 238
8.2.2 Second-order transitions......Page 239
8.3.1 Displacive transitions......Page 240
8.3.2 Reconstructive transitions......Page 241
8.4.1 Positional ordering......Page 243
8.4.2 Orientational ordering......Page 244
8.5.1 The austenite–martensite transition......Page 245
8.5.2 Martensitic transformations in zirconia......Page 248
8.5.3 Martensitic transitions in Ni–Ti alloys......Page 249
8.5.4 Shape-memory alloys......Page 250
8.6.2 Non-equilibrium solidification and coring......Page 252
8.6.3 Solidification in systems containing a eutectic point......Page 253
8.6.4 Equilibrium heat treatment of steel in the Fe–C phase diagram......Page 255
8.7.2 The rate of oxidation......Page 258
8.7.3 Oxide film microstructure......Page 259
8.7.4 Film growth via diffusion......Page 260
8.7.5 Alloys......Page 261
8.8.1 Spinel formation......Page 262
8.8.2 The kinetics of spinel formation......Page 263
Problems and exercises......Page 264
9.1.1 Cell basics......Page 269
9.1.2 Standard electrode potentials......Page 271
9.1.3 Cell potential and Gibbs energy......Page 272
9.2.1 pH meters......Page 273
9.2.2 Ion selective electrodes......Page 275
9.2.3 Oxygen sensors......Page 276
9.3.1 ‘Dry’ and alkaline primary batteries......Page 277
9.3.2 Lithium-ion primary batteries......Page 278
9.3.4 Lithium-ion secondary batteries......Page 279
9.3.5 Lithium–air batteries......Page 281
9.3.6 Fuel cells......Page 282
9.4.1 The reaction of metals with water and aqueous acids......Page 284
9.4.2 Dissimilar metal corrosion......Page 286
9.4.3 Single metal electrochemical corrosion......Page 287
9.5 Electrolysis......Page 288
9.5.2 Electroplating......Page 289
9.5.3 The amount of product produced during electrolysis......Page 290
9.5.4 The electrolytic preparation of titanium by the FFC Cambridge Process......Page 291
9.6.2 The stability field of water......Page 292
9.6.3 Pourbaix diagram for a metal showing two valence states, M2+ and M3+......Page 293
9.6.4 Pourbaix diagram displaying tendency for corrosion......Page 295
Further reading......Page 296
Problems and exercises......Page 297
Part 4: Physical properties......Page 301
10.1.1 Strength......Page 303
10.1.2 Stress and strain......Page 304
10.1.3 Stress–strain curves......Page 305
10.1.5 Superelasticity......Page 308
10.1.6 Hardness......Page 309
10.2.1 Young’s modulus (the modulus of elasticity) (E or Y)......Page 311
10.2.2 Poisson’s ratio (n)......Page 313
10.2.4 The shear modulus or modulus of rigidity (G or µ)......Page 314
10.2.8 Ultrasonic waves in elastic solids......Page 315
10.3.1 Brittle fracture......Page 317
10.3.3 Dislocation movement and plastic deformation......Page 320
10.3.4 Brittle and ductile materials......Page 323
10.3.6 Fracture following plastic deformation......Page 324
10.3.7 Strengthening......Page 326
10.3.8 Computation of deformation and fracture......Page 328
10.4.1 Fatigue......Page 329
10.4.2 Creep......Page 330
10.5.1 Solid lubricants......Page 334
10.5.2 Auxetic materials......Page 335
10.5.3 Thin films and nanowires......Page 337
10.6.1 Young’s modulus of large particle composites......Page 339
10.6.2 Young’s modulus of fibre-reinforced composites......Page 340
10.6.3 Young’s modulus of a two-phase system......Page 341
Further reading......Page 342
Problems and exercises......Page 343
11.1.1 Relative permittivity and polarisation......Page 349
11.1.2 Polarisability......Page 351
11.1.3 Polarisability and relative permittivity......Page 352
11.1.4 The frequency dependence of polarisability and relative permittivity......Page 353
11.1.5 The relative permittivity of crystals......Page 354
11.2.1 The piezoelectric and pyroelectric effects......Page 355
11.2.2 Crystal symmetry and the piezoelectric and pyroelectric effects......Page 357
11.2.3 Piezoelectric mechanisms......Page 358
11.2.4 Quartz oscillators......Page 359
11.2.5 Piezoelectric polymers......Page 360
11.3.1 Ferroelectric crystals......Page 362
11.3.2 Hysteresis and domain growth in ferroelectric crystals......Page 363
11.3.4 The temperature dependence of ferroelectricity and antiferroelectricity......Page 366
11.3.5 Ferroelectricity due to hydrogen bonds......Page 367
11.3.6 Ferroelectricity due to polar groups......Page 369
11.3.7 Ferroelectricity due to medium-sized transition-metal cations......Page 370
11.3.9 Doping and modification of properties......Page 371
11.3.10 Relaxor ferroelectrics......Page 373
11.3.11 Ferroelectric nanoparticles, thin films and superlattices......Page 374
11.3.12 Flexoelectricity in ferroelectrics......Page 375
Further reading......Page 376
Problems and exercises......Page 377
12.1.1 Characterisation of magnetic materials......Page 383
12.1.2 Magnetic dipoles and magnetic flux......Page 384
12.1.3 Atomic magnetism......Page 385
12.1.4 Overview of magnetic materials......Page 387
12.2.1 The magnetic moment of paramagnetic atoms and ions......Page 390
12.2.2 High and low spin: crystal field effects......Page 391
12.2.3 Temperature dependence of paramagnetic susceptibility......Page 393
12.2.4 Pauli paramagnetism......Page 395
12.3.1 Ferromagnetism......Page 396
12.3.2 Exchange energy......Page 398
12.3.3 Domains......Page 400
12.3.5 Hard and soft magnetic materials......Page 402
12.4 Antiferromagnetic materials and superexchange......Page 403
12.5.1 Cubic spinel ferrites......Page 404
12.5.3 Hexagonal ferrites......Page 405
12.5.4 Double exchange......Page 406
12.6.1 Small particles and data recording......Page 407
12.6.3 Superlattices......Page 408
12.6.4 Photoinduced magnetism......Page 409
12.7.1 Magnetic defects in semiconductors......Page 411
12.7.2 Charge and spin states in cobaltites and manganites......Page 412
Problems and exercises......Page 415
13.1.1 Metals, semiconductors and insulators......Page 421
13.1.2 Electron drift in an electric field......Page 423
13.1.3 Electronic conductivity......Page 424
13.1.4 Resistivity......Page 426
13.2.1 Intrinsic semiconductors......Page 427
13.2.2 Band gap measurement......Page 429
13.2.3 Extrinsic semiconductors......Page 430
13.2.4 Carrier concentrations in extrinsic semiconductors......Page 431
13.2.5 Characterisation......Page 433
13.2.6 The p-n junction diode......Page 435
13.3.1 Metals and insulators......Page 438
13.3.2 Electron–electron repulsion......Page 439
13.3.3 Modification of insulators......Page 440
13.3.4 Transparent conducting oxides......Page 441
13.4 Conducting polymers......Page 442
13.5 Nanostructures and quantum confinement of electrons......Page 445
13.5.1 Quantum wells......Page 446
13.5.2 Quantum wires and quantum dots......Page 447
13.6.1 Superconductors......Page 448
13.6.2 The effect of magnetic fields......Page 449
13.6.4 The nature of superconductivity......Page 450
13.6.6 Cuprate high-temperature superconductors......Page 452
Problems and exercises......Page 460
14.1.1 Light waves......Page 467
14.1.2 Photons......Page 469
14.2.1 Incandescence......Page 471
14.2.2 Luminescence and phosphors......Page 472
14.2.3 Light-emitting diodes (LEDs)......Page 475
14.2.4 Solid-state lasers......Page 476
14.3.2 Non-luminous solids......Page 482
14.3.3 Attenuation......Page 483
14.4.1 Refraction......Page 484
14.4.2 Refractive index and structure......Page 486
14.4.4 Dispersion......Page 487
14.5.1 Reflection from a surface......Page 488
14.5.2 Reflection from a single thin film......Page 489
14.5.4 The colour of a single thin film in air......Page 491
14.5.5 The colour of a single thin film on a substrate......Page 492
14.5.7 Multiple thin films and dielectric mirrors......Page 493
14.6.1 Rayleigh scattering......Page 494
14.7.1 Diffraction by an aperture......Page 497
14.7.2 Diffraction gratings......Page 498
14.7.3 Diffraction from crystal-like structures......Page 499
14.7.4 Photonic crystals......Page 500
14.8.2 Attenuation in glass fibres......Page 501
14.8.3 Dispersion and optical fibre design......Page 502
14.8.4 Optical amplification......Page 504
14.9.1 Photoconductivity and photovoltaic solar cells......Page 505
14.9.2 Dye sensitized solar cells......Page 507
14.10.1 The optical properties of quantum wells......Page 508
14.10.2 The optical properties of nanoparticles......Page 509
Problems and exercises......Page 511
15.1.1 The heat capacity of a solid......Page 517
15.1.3 Quantum theory of heat capacity......Page 518
15.1.4 Heat capacity at phase transitions......Page 519
15.2.2 Thermal conductivity of solids......Page 520
15.2.3 Thermal conductivity and microstructure......Page 522
15.3.1 Thermal expansion......Page 523
15.3.2 Thermal expansion and interatomic potentials......Page 524
15.3.3 Thermal contraction......Page 525
15.3.4 Zero thermal contraction materials......Page 527
15.4.1 Thermoelectric coefficients......Page 528
15.4.2 Thermoelectric effects and charge carriers......Page 530
15.4.4 Thermocouples, power generation and refrigeration......Page 531
15.5.1 The magnetocaloric effect and adiabatic cooling......Page 534
15.5.2 The giant magnetocaloric effect......Page 535
Problems and exercises......Page 536
Part 5: Nuclear properties of solids......Page 539
16.1.1 Naturally occurring radioactive elements......Page 541
16.1.3 Nuclear equations......Page 542
16.1.4 Radioactive series......Page 543
16.1.5 Nuclear stability......Page 545
16.2.1 Transuranic elements......Page 546
16.3.1 The rate of nuclear decay......Page 549
16.3.2 Radioactive dating......Page 551
16.4.1 The binding energy of nuclides......Page 553
16.4.2 Nuclear fission......Page 554
16.4.3 Thermal reactors for power generation......Page 555
16.4.6 Fusion......Page 557
16.5 Nuclear waste......Page 558
16.5.2 The storage of nuclear waste......Page 559
Further reading......Page 560
Problems and exercises......Page 561
Subject Index......Page 565