Undersea Fiber Communication Systems (Optics and Photonics)

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

DescriptionThis book provides a detailed overview of the evolution of undersea communications systems, with emphasis on the most recent breakthroughs of optical submarine cable technologies based upon Wavelength Division Multiplexing, optical amplification, new-generation optical fibers, and high-speed digital electronics. The role played by submarine-communication systems in the development of high-speed networks and associated market demands for multiplying Internet and broadband services is also covered.Importance of This TopicThis book will fill the gap between highly specialized papers from large international conferences and broad-audience technology review updates. The book provides a full overview of the evolution in the field and conveys the dimension of the large undersea projects. In addition, the book uncovers the myths surrounding marine operations and installations in that domain, which have remained known so far to only very few specialists.

Author(s): José Chesnoy, ed.
Series: Optics and Photonics (Formerly Quantum Electronics)
Edition: 1
Publisher: Academic Press
Year: 2002

Language: English
Pages: 581
Tags: Связь и телекоммуникации;Волоконно-оптические системы передачи;

Cover......Page 1
OPTICS AND PHOTONICS (Formerly Quantum Electronics)......Page 3
Undersea Fiber Communication Systems......Page 4
Copyright......Page 5
CONTENTS......Page 6
CONTRIBUTORS......Page 16
FOREWORD......Page 24
PREFACE......Page 26
PART I. INTRODUCTION......Page 29
I. INTRODUCTION......Page 31
II. CONFIGURATION OF A SUBMARINE COMMUNICATION SYSTEM......Page 33
III. THE ADVENT OF TERABIT OPTICAL TECHNOLOGY......Page 34
V. OBJECTIVES AND OUTLINE OF THE BOOK......Page 39
REFERENCES......Page 41
2 HISTORICAL OVERVIEW OF SUBMARINE COMMUNICATION SYSTEMS......Page 43
I. INTRODUCTION......Page 44
A. The Early Age of the Electric Telegraph (1800–1850)......Page 45
B. The British Era of Submarine Cable (1850–1872)......Page 46
C. The Global Network (1872–1920)......Page 50
D. Cable and Radio Competition (1920–1960)......Page 53
E. Technical and Economical Aspects......Page 54
A. The Earliest Telephonic Submarine Cable Trials......Page 58
B. The First Generation of Coaxial Submarine Cable (1950–1961)......Page 59
C. The Second Generation of Coaxial Submarine Cable (1960–1970)......Page 60
D. Wideband Submarine Cables (1970–1988)......Page 62
E. Technical and Economical Aspects......Page 63
A. From Analog to Digital (1976–1988)......Page 66
B. Regenerated Fiber Optic Cables and the Consortium Era (1986–1995)......Page 67
C. Optical Amplification and WDM Technology (1995–2000)......Page 71
D. Cable Ships and Offshore Works......Page 73
V. CONCLUSION......Page 74
BIBLIOGRAPHY......Page 76
PART II. SUBMARINE SYSTEMDESIGN......Page 77
3 BASICS OF DIGITAL OPTICAL COMMUNICATIONS......Page 79
B. Optical Channel Capacity......Page 81
C. Binary Optical Channel and the Symbol Probabilities......Page 84
A. Parameters to Be Modulated......Page 85
B. Spectrum of Digitally Modulated Signals......Page 86
C. Modulation Formats......Page 89
D. Modulation Implementation......Page 93
A. Photodetector Sensitivity and Optical-to-Electrical Signal Conversion......Page 95
B. Noise Generation and Demonstration Mechanisms at the Receiver......Page 96
C. Noise Addition in Optical Amplification......Page 102
D. Optical Signal-to-Noise Ratio......Page 106
B. Bit Error Ratio and Receiver Sensitivity Definitions......Page 107
C. Shot-Noise-Limited Ideal Detection......Page 111
D. Amplifier Less Thermal-Noise-Limited Detection......Page 114
E. Detection of Preamplified Optical Signals......Page 115
ACKNOWLEDGMENTS......Page 119
REFERENCES......Page 120
4 OPTICAL AMPLIFICATION......Page 123
I. INTRODUCTION......Page 124
A. Basic Principles......Page 125
B. Dynamic Behavior......Page 130
C. Noise Characteristics......Page 132
D. Giles Parameters......Page 135
A. Noise Figure......Page 137
D. Polarization-Dependent Loss......Page 139
F. Polarization-Dependent Gain......Page 140
G. Comparison with Terrestrial Requirements......Page 141
IV. RELATED TECHNOLOGY......Page 143
A. Gain Peak Wavelength Determination......Page 145
C. Self-Filtering Effect......Page 147
D. Design Rules......Page 150
E. Gain Compression and Pump Wavelength......Page 151
G. Signal-to-Noise Ratio......Page 152
A. Gain Bandwidth......Page 154
B. Glass Composition......Page 155
C. Gain Equalization......Page 157
D. Equalization Technology......Page 159
VII. EDFAs IMPAIRMENTS......Page 160
B. Spectral Hole Burning......Page 161
C. Modeling of Spectral Hole Burning......Page 163
D. Other Limitations......Page 164
A. System Performance......Page 166
C. C + -Band Systems......Page 168
A. Principle of Raman Amplification......Page 170
C. All-Raman Amplified Submarine Links......Page 173
X. FURTHER AMPLIFICATION PERSPECTIVES......Page 175
REFERENCES......Page 176
5 ULTRA-LONG-HAUL SUBMARINE TRANSMISSION......Page 185
A. A Technical Challenge: High Capacity per Optical Fiber......Page 186
B. Optical Signal-to-Noise Ratio......Page 188
C. Reduction of the Propagation Impairment......Page 191
D. Submarine Line Terminal Equipment Features......Page 194
E. Repeater Supervisory and Fiber Fault Localization......Page 197
F. Q Budget and Typical Repeater Spacing......Page 201
A. Power Preemphasis......Page 205
B. Fixed-Gain Equalizer......Page 208
C. Tunable Gain Equalizer......Page 212
D. Impact of Nonoptimal Gain Equalization......Page 214
A. Nonlinear Kerr-Type Effects......Page 216
B. Stimulated Raman Scattering......Page 219
C. Transmission Experiments......Page 221
A. Performance Requirement in Submarine Systems......Page 228
B. Introduction to Forward Error Correction......Page 229
C. Channel Model and Fundamental Limits......Page 230
D. Practical Forward Error Correction Schemes in Submarine Transmission Systems......Page 232
E. Reed–Solomon Codes......Page 233
F. Concatenated Codes......Page 234
H. Examples of FEC Scheme Performances for Submarine Transmission Systems......Page 236
A. Modulation Format......Page 238
B. C + L-Band Erbium-Doped Fiber Amplifier......Page 240
C. Transmission Systems with Distributed Raman Amplifiers......Page 241
D. 40-Gbps Wavelength-Division Multiplexed Transmission Experiments......Page 247
VII. CONCLUSION......Page 251
REFERENCES......Page 252
I. INTRODUCTION......Page 257
II. RECENT DEVELOPMENTS......Page 258
III. APPLICATIONS......Page 263
IV. SYSTEM CONFIGURATIONS......Page 264
V. UNREPEATERED SYSTEM TECHNOLOGIES......Page 265
A. Line Fiber......Page 266
B. Postamplification......Page 267
C. Preamplification......Page 268
D. Raman Amplification......Page 269
E. Remote Amplification......Page 274
A. Stimulated Brillouin Scattering......Page 277
B. Kerr Effect......Page 278
C. Stimulated Raman Scattering......Page 281
VIII. MAIN LABORATORY ACHIEVEMENTS......Page 285
A. Deployed Unrepeatered Systems......Page 289
B. Safety Aspects......Page 292
REFERENCES......Page 293
7 POLARIZATION EFFECTS IN LONG-HAUL UNDERSEA SYSTEMS......Page 297
I. INTRODUCTION......Page 298
A. Fiber Propagation......Page 301
B. Polarization Mode Dispersion......Page 305
C. Polarization-Dependent Loss and Gain......Page 310
D. Comments on Notation and Nomenclature......Page 314
A. Model Formulation......Page 316
B. Theoretical Validation......Page 319
C. Experimental Validation......Page 327
D. Applications to Transoceanic Systems......Page 329
ACKNOWLEDGMENTS......Page 331
REFERENCES......Page 332
I. INTRODUCTION......Page 335
II. NONLINEAR PULSE PROPAGATION......Page 336
A. Periodic Loss Averaging......Page 338
B. Soliton Perturbation Theory......Page 339
C. Soliton–Noise Interactions......Page 341
D. Soliton 2-R Regeneration......Page 342
F. Polarization Multiplexing......Page 344
G. Soliton 3-R Regeneration......Page 346
III. DISPERSION-MANAGED SOLITONS......Page 347
A. Variational Representation......Page 348
C. Dispersion-Managed Soliton Example......Page 349
D. Self-Phase Modulation......Page 350
E. Dispersion-Managed Soliton 2-R Regeneration......Page 352
F. Cross-Phase Modulation......Page 354
G. Doubly Periodic Maps......Page 355
H. Nonlinear Chirped Return-to-Zero Pulses......Page 357
I. Dispersion-Managed Soliton 3-R Regeneration......Page 358
J. Dispersion-Managed Soliton Distributed Raman Amplification......Page 360
ACKNOWLEDGMENTS......Page 364
REFERENCES......Page 365
PART III SUBMARINE EQUIPMENT......Page 369
9 SUBMERGED PLANT......Page 371
I. OVERVIEW OF SUBMERGED PLANT......Page 372
A. Optical Topology......Page 374
C. Supervisory Functionality......Page 378
D. Power Unit and Protection......Page 381
III. EQUALIZERS......Page 382
B. Active Tilt Equalizers......Page 383
IV. BRANCHING UNITS......Page 385
A. Full Fiber-Drop Branching Units......Page 386
B. Wavelength Add=Drop Branching Units......Page 387
C. Power Module......Page 388
V. MECHANICAL ENGINEERING OF SUBMARINE EQUIPMENT......Page 391
A. Internal Design Aspects......Page 392
B. External Aspects of Design......Page 393
VI. POWER-FEED EQUIPMENT FOR SUBMARINE EQUIPMENT......Page 394
A. Network Powering......Page 395
B. High-Voltage Generation......Page 397
VII. RELIABILITY......Page 398
A. Quality Control and Qualification......Page 399
B. Reliability of Submerged Plant......Page 400
C. Reliability of Power-Feed Equipment......Page 401
VIII. FUTURE TRENDS IN SUBMARINE EQUIPMENT......Page 402
REFERENCES......Page 403
I. INTRODUCTION......Page 405
A. Submarine Line Terminal Equipment for 2.5-Gbps WDM Systems......Page 408
B. Submarine Line Terminal Equipment for 10-Gbps WDM Systems......Page 413
A. Outline of Network Management System......Page 425
B. Details of Submarine Element and Network Management......Page 427
C. Integration with Terrestrial Systems......Page 430
D. Standard Interface between the Element Management and Network Management Layers......Page 431
E. Implementation of the CORBA Interface......Page 432
IV. VIEW ON FUTURE DEVELOPMENTS......Page 435
A. Increasing the Number of Multiplexed Wavelengths......Page 436
C. Downsizing of Equipment......Page 437
REFERENCES......Page 438
I. INTRODUCTION......Page 441
A. Domestic Networks......Page 442
III. BRANCHING UNITS......Page 444
IV. PROTECTION MECHANISMS: LINEAR AND RING......Page 448
A. Reducing the Amount of Protection Equipment......Page 452
V. PROTECTION MECHANISMS: OPTICAL CROSS-CONNECTS AND MESH PROTECTION......Page 455
VI. NON-SDH=SONET UNDERSEA NETWORKING......Page 458
VII. FUTURE OF SUBMARINE NETWORKS......Page 460
REFERENCES......Page 461
I. INTRODUCTION......Page 463
A. Fabrication......Page 466
B. Waveguide Theory......Page 468
A. Attenuation and Bending......Page 469
B. Cutoff Wavelength......Page 471
C. Mode Field and Effective Area......Page 472
D. Dispersion......Page 473
E. Dispersion Compensation and Equivalent Effective Area......Page 476
IV. SUMMARY AND CHARACTERISTICS OF NEXT-GENERATION FIBERS......Page 479
REFERENCES......Page 480
13 CABLE TECHNOLOGY......Page 481
II. CABLE REQUIREMENTS......Page 482
B. Pressure and Temperature Range......Page 483
D. Manufacturing and Installation Requirements......Page 484
A. Cable Types......Page 485
B. Mechanical Characteristics......Page 489
C. Electrical Characteristics......Page 494
A. Optical Fiber......Page 497
B. Optical Package......Page 503
C. Inner Strength Member......Page 507
D. Cable Insulation......Page 510
F. Armor Protection......Page 512
G. Hydrogen Protection......Page 514
A. Fiber Microbend Sensitivity Tests......Page 516
C. Optical Performance after Cable Manufacture......Page 518
F. Thermal Tests to Simulate Cable Storage......Page 519
VI. CONCLUSION......Page 520
REFERENCES......Page 521
14 MARINE AND MAINTENANCE (FROM INCEPTION TO THE GRAVE)......Page 525
II. CHOICE OF A CABLE ROUTE......Page 526
A. Feasibility and Desktop Studies......Page 527
B. Key Areas of the Desktop Study......Page 528
III. MARINE SURVEY AND THE AVAILABLE TOOLS......Page 530
A. Burial Assessment Survey......Page 531
B. Surveys to Determine Water Depth and Sea Bottom Profile......Page 532
B. Slack Planning......Page 535
D. The Supplier’s Manufacturing Program......Page 539
A. Cable Ships......Page 540
B. Ploughs......Page 542
C. Remotely Operated Vehicles......Page 543
E. Cable Grapnels......Page 545
VI. MARINE INSTALLATION ACTIVITIES......Page 546
A. Cable-Loading Activities......Page 549
B. Shore-End Landings......Page 550
D. Ploughed Lay......Page 553
E. Cable and Pipeline Crossings......Page 554
F. Cable Splices......Page 555
G. Laying a Branching Unit......Page 557
H. Postlay Inspection and Burial......Page 558
I. Power-Feeding Safety......Page 559
VII. SYSTEM MAINTENANCE CAPABILITIES AND CABLE REPAIR OPERATIONS......Page 560
A. Typical Surface-Laid Cable Repair Operation......Page 563
VIII. MAINTENANCE SUPPORT FACILITIES......Page 566
ACKNOWLEDGMENTS......Page 567
REFERENCES......Page 568
INDEX......Page 569
Optics and Photonics......Page 580