Ultrathin magnetic structures ii: measurement techniques and novel magnetic properties

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

The field of magnetism in ultrathin metallic structures is one of growing importance, from both technical and fundamental viewpoints. The rapid development of this field has generated an urgent need for a single treatment which can serve as an introduction to the field for those entering it from a diverse range of backgrounds in the physical sciences but which will also serve as a timely overview for those already working in this area. In this volume, the second of four, a very thorough discussion of the important subject of magnetic anisotropies, coupling and giant magnetoresistance is given, and the reader is introduced to RF techniques, the Surface Magneto-Optic Kerr Effect, and Mossbauer Spectroscopy techniques used to probe these properties.

Author(s): Bretislav Heinrich, J.A.C. Bland
Publisher: Springer
Year: 2005

Language: English
Pages: 362
City: S.l
Tags: Специальные дисциплины;Наноматериалы и нанотехнологии;Физика наноразмерных систем;Магнитные свойства наноструктур;

Contents......Page 9
1. Magnetic Metal Films on Semiconductor Substrates......Page 15
1.1 3d Transition Metals on Zincblende Structures......Page 17
1.1.1 bcc Fe......Page 19
1.1.2 bcc Co......Page 38
1.2 3d Transition Metals on the Diamond Structure......Page 47
1.2.2 Cu on Si......Page 48
1.3 Rare Earths......Page 49
1.4.1 Non-Volatile Magnetic Memory......Page 50
1.4.2 Microwave Devices......Page 51
1.4.3 Spin Injection Devices......Page 53
References......Page 56
2.1 Theory of Exchange Coupling in Magnetic Multilayers......Page 59
2.1.1 RKKY-Like Models......Page 60
2.1.2 Non-Perturbation Calculations for Strongly Hybridized Systems......Page 65
2.1.3 Oscillation of the Exchange Coupling with Interlayer Thickness, d......Page 74
2.1.4 Non-Oscillatory Exchange Terms and Anderson-Like Models......Page 76
2.1.5 Non-Heisenberg Exchange......Page 83
2.1.6 Band Structure Results......Page 86
2.1.7 Temperature Dependence of Exchange Coupling......Page 92
2.1.8 Conclusions......Page 95
2.2.1 Interlayer Coupling. Review of Experiments......Page 96
2.2.2 Interlayer Exchange Coupling. Theoretical Models......Page 102
2.2.3 Magnetoresistance: A Survey......Page 111
2.2.4 Theoretical Models of the Magnetoresistance......Page 116
2.2.5 Review and Discussion of Magnetoresistance Data......Page 120
2.3 Investigation of Exchange Coupled Magnetic Layers by Scanning Electron Microscopy with Polarization Analysis (SEMPA)......Page 131
2.3.1 The SEMPA Technique......Page 132
2.3.2 SEMPA Measurements of Exchange Coupled Multilayers......Page 146
2.4 Giant Magnetoresistance and Oscillatory Interlayer Coupling in Polycrystalline Transition Metal Multilayers......Page 162
2.4.1 Preparation of Multilayers......Page 164
2.4.2 Antiferromagnetic Coupling and Giant Magnetoresistance in Fe/Cr Multilayers......Page 166
2.4.3 Magnetoresistance of Ferromagnetic Metals......Page 169
2.4.4 Oscillatory Interlayer Coupling......Page 173
2.4.5 Giant Magnetoresistance of Cu-Based Multilayers......Page 181
2.4.6 Low Field Giant Magnetoresistance Structures......Page 188
2.4.7 Interfacial Origin of Giant Magnetoresistance......Page 189
2.4.8 Giant Magnetoresistance in Systems Other than Multilayers......Page 194
2.4.9 Conclusions......Page 199
References......Page 200
3.1 Ferromagnetic Resonance in Ultrathin Film Structures......Page 209
3.1.1 Magnetic Properties of Ultrathin Magnetic Layers and the Landau–Lifshitz Equations of Motion......Page 210
3.1.2 FMR Technique and Experimental Procedures......Page 218
3.1.3 Measurements of Magnetic Anisotropies......Page 223
3.1.4 Exchange-Coupled Ferromagnetic Layers......Page 230
3.2 Light Scattering from Ultrathin Magnetic Layers and Bilayers......Page 236
3.2.1 Introduction......Page 237
3.2.2 The Light Scattering Experiment......Page 238
3.2.3 Light Scattering for a Simple Model......Page 241
3.2.4 The Intensity of the Scattered Light......Page 248
3.2.5 Magnetic Damping......Page 261
3.2.6 Magnetic Bilayers......Page 263
3.2.7 Examples......Page 267
Appendix......Page 271
3.3.1 Introduction......Page 272
3.3.2 Theoretical Background......Page 273
3.3.3 Dipolar Coupled Collective Spin Waves......Page 276
3.3.4 Interlayer-Exchange Coupled Collective Spin Waves......Page 281
3.3.5 Superlattices with Spatial Inhomogeneities......Page 288
3.3.6 Conclusion and Outlook......Page 291
3.4.1 Basic Principles......Page 293
3.4.2 Experimental Results of NMR on Multilayers and Films......Page 297
3.4.3 Conclusion......Page 303
References......Page 304
4.1 Microscopic Basis......Page 311
4.2 Macroscopic Formulas......Page 313
4.3 Instrumentation, Techniques, and Sensitivity......Page 317
4.4.1 Monolayer Magnetism......Page 320
4.4.2 Thin Film Anisotropy......Page 323
4.4.3 Critical Phenomena......Page 328
4.4.4 Coupled Layers......Page 331
4.4.5 Magneto-Optical Media......Page 333
4.4.6 Magnetic Circular-Dichroism......Page 334
4.5 Outlook......Page 336
References......Page 337
5. Mössbauer Spectroscopy as a Means of Characterizing Surfaces, Thin Films, and Superlattices......Page 340
5.1 Elements of Mössbauer Spectroscopy......Page 342
5.2 Mössbauer Spectrometers......Page 344
5.3 Information Obtainable from Mössbauer Spectra......Page 346
5.5 Conversion Electron Mössbauer Spectroscopy (CEMS)......Page 347
5.6 Magnetic Relaxation in Thin Films and Superlattices......Page 349
5.7 Examples of Mössbauer Spectroscopy Applied to the Study of Magnetic Thin Films, Surfaces, and Superlattices......Page 350
5.8 Conclusions......Page 355
References......Page 356
C......Page 357
F......Page 358
M......Page 359
Q......Page 360
T......Page 361
Z......Page 362