Ultrathin Magnetic Structures are fascinating objects of study for physicists and, furthermore, they offer exciting technological possibilities in high density recording media. In this book, the first of two volumes, the world's leading experts present comprehensive descriptions of the physical properties, structure, and methods of studying thin magnetic layers.
Author(s): J.A.C. Bland, Bretislav Heinrich
Publisher: Springer
Year: 2005
Language: English
Pages: 358
Contents......Page 8
1.1 Overview......Page 13
1.2 Magnetism in SI Units and Gaussian Units......Page 19
1.2.1 Equations of Electricity and Magnetism......Page 21
1.2.2 Translation Keys......Page 29
References......Page 31
2.1 Electronic Structure of Magnetic Thin Films......Page 32
2.1.1 Underlying Theory......Page 33
2.1.2 Calculation of the Magnetic Properties of Bulk Fe, Co and Ni......Page 38
2.1.3 Calculation of the Magnetic Properties of Thin Films......Page 42
2.1.4 Conclusions......Page 50
2.2 Magnetic Anisotropy from First Principles......Page 51
2.2.1 Method......Page 52
2.2.3 Co Monolayer......Page 53
2.2.4 Co/Pd, Co/Ag and Co/Cu Multilayers......Page 62
2.2.5 Co/Ni Multilayers......Page 68
2.2.6 Analysis of the Anisotropy Energy of Co[sub(1)]Pd[sub(2)] Multilayers......Page 72
2.2.7 Conclusions......Page 75
2.3.1 Origin of the Magnetic Anisotropy in Thin Films......Page 76
2.3.2 Experimental Methods......Page 84
2.3.3 Experimental Results......Page 89
2.3.4 Concluding Remarks......Page 96
References......Page 97
3.1 Introduction......Page 102
3.2 Interactions Between Spins: A Basic Spin Hamiltonian......Page 104
3.3.1 The Ground State......Page 108
3.3.2 The Nature of Spin Waves in Ultrathin Films; Low Temperature Thermodynamic Properties......Page 111
3.4 Beyond Spin Wave Theory: The Intermediate Temperature Regime......Page 121
3.5 The Transition Temperature of Ultrathin Films......Page 125
3.6 Concluding Remarks......Page 126
References......Page 132
4.1.1 Introduction......Page 133
4.1.2 Instrumentation......Page 138
4.1.3 Secondary Electrons (SPSEES)......Page 142
4.1.4 Elastic Scattering (Spin-Polarized Low-Energy Electron Diffraction: SPLEED)......Page 145
4.1.5 Inelastic Scattering (Spin-Polarized Electron Energy-Loss Spectroscopy: SPEELS)......Page 149
4.1.6 Photoemission Techniques......Page 155
4.2 Probing Magnetic Properties with Spin-Polarized Electrons......Page 162
4.2.1 Magnetic Information from Measurement of Spin Polarization or Spin Asymmetry......Page 163
4.2.2 Unique Features of Magnetometry with Spin Polarized Electrons......Page 165
4.2.3 Field Dependence of the Magnetization......Page 167
4.2.4 Temperature Dependence of the Magnetization......Page 172
4.2.5 Magnetism away from Equilibrium......Page 179
References......Page 181
5.1.1 Real Space and k-space......Page 187
5.1.2 The Surface as a Diffraction Grating......Page 192
5.1.3 Waves Inside a Slab......Page 210
5.1.4 Applications of RHEED to the Study of Growth......Page 225
5.2 X-Ray Photoelectron and Auger Electron Forward Scattering: A Structural Diagnostic for Epitaxial Thin Films......Page 230
5.2.1 Introduction......Page 231
5.2.2 The Basics of Electron-Atom Scattering......Page 233
5.2.3 Experimental Problems of Current Interest......Page 260
5.2.4 Conclusions......Page 273
5.3.1 Introduction......Page 274
5.3.2 Overview of the Problem......Page 275
5.3.3 X-Ray Diffuse Scattering......Page 276
5.3.4 Modeling Ultrathin Layered Structures......Page 279
5.3.5 Future Directions......Page 294
References......Page 295
6.1 Introduction......Page 314
6.2 Theory of Polarized Neutron Reflection......Page 315
6.2.1 The Optical Potential for a Magnetized Medium......Page 316
6.2.2 Transfer Matrix Methods and the Polarization Dependent Reflectivity......Page 321
6.2.3 PNR Magnetometry of Single Magnetic Films......Page 325
6.2.4 The Diffraction Limit......Page 329
6.2.5 Rough Interfaces and Wave Coherence......Page 331
6.3.1 Time of Flight Methods......Page 338
6.3.2 Fixed Wavelength Methods......Page 340
6.4.1 Magnetic Moments in Ultrathin Fe Films......Page 341
6.4.2 Comparison of the Experimentally Determined Moment with Theory......Page 347
6.4.3 Conclusions......Page 350
References......Page 351
C......Page 353
F......Page 354
M......Page 355
P......Page 356
S......Page 357
Z......Page 358