Ultrafast All-Optical Signal Processing Devices

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Semiconductor-based Ultra-Fast All-Optical Signal Processing Devices –a key technology for the next generation of ultrahigh bandwidth optical communication systems!The introduction of ultra-fast communication systems based on all-optical signal processing is considered to be one of the most promising ways to handle the rapidly increasing global communication traffic. Such systems will enable real time super-high definition moving pictures such as high reality TV-conference, remote diagnosis and surgery, cinema entertainment and many other applications with small power consumption. The key issue to realize such systems is to develop ultra-fast optical devices such as light sources, all-optical gates and wavelength converters.Ultra-Fast All-Optical Signal Processing Devices discusses the state of the art development of semiconductor-based ultrafast all-optical devices, and their various signal processing applications for bit-rates 100Gb/s to 1Tb/s.Ultra-Fast All-Optical Signal Processing Devices:Provides a thorough and in-depth treatment of the most recent achievements in ultrafast all-optical devicesDiscusses future networks with applications such as HD-TV and super-high definition moving screens as a motivating background for devices researchCovers mode-locked semiconductor lasers, electro-absorption modulator based 160Gb/s signal sources, SOA based symmetric Mach-Zehnder type all-optical gates, intersubband transition gate device, and moreExplains the technical issues behind turning the ultra-fast optical devices into practical working toolsExamples of above 160Gb/s transmission experimentsDiscusses future prospects of the ultra-fast signal processing devicesThis invaluable reference will provide device researchers and engineers in industry, researchers at universities (including graduate students, and post doctorial researchers and professors) and research institutes with a thorough understanding of ultrahigh bandwidth optical communication systems. Device and communication market watchers will also find this book useful.

Author(s): Hiroshi Ishikawa
Edition: 1
Year: 2008

Language: English
Pages: 258

Ultrafast All-Optical Signal Processing Devices......Page 4
Contents......Page 8
Contributors......Page 12
Preface......Page 14
1.1 Evolution of Optical Communication Systems and Device Technologies......Page 16
1.2 Increasing Communication Traffic and Power Consumption......Page 17
1.3.1 Future Networks......Page 19
1.3.2 Schemes for Huge Capacity Transmission......Page 20
1.4.1 Challenges......Page 21
1.4.2 Basics of the Nonlinear Optical Process......Page 22
1.5 Overview of the Devices and Their Concepts......Page 26
References......Page 28
2.1 Requirement for Light Sources......Page 30
2.1.1 Optical Short Pulse Source......Page 31
2.1.2 Optical Time Division Multiplexer......Page 34
2.2.1 Active Mode Locking......Page 35
2.2.2 Passive Mode Locking......Page 38
2.2.3 Hybrid Mode Locking......Page 40
2.2.4 Optical Synchronous Mode Locking......Page 42
2.2.5 Application for Clock Extraction......Page 44
2.3.1 Overview of Electro-absorption Modulator......Page 45
2.3.2 Optical Short Pulse Generation Using EAM......Page 48
2.3.3 Optical Time Division Multiplexer Based on EAMs......Page 53
2.3.4 160-Gb/s Optical Signal Generation......Page 56
2.3.5 Detection of a 160-Gb/s OTDM Signal......Page 58
2.3.6 Transmission Issues......Page 61
References......Page 62
3.2 Fundamentals of SOA......Page 68
3.3 SOA as an Ultrafast Nonlinear Medium......Page 71
3.4.1 Theoretical Background......Page 72
3.4.2 Signal Processing Using the Fast Response Component of SOA......Page 75
3.5.1 Fundamentals of the SMZ All-Optical Gate......Page 79
3.5.2 Technology of Integrating Optical Circuits for an SMZ All-Optical Gate......Page 82
3.5.3 Optical Demultiplexing......Page 83
3.5.4 Wavelength Conversion and Signal Regeneration......Page 88
References......Page 98
4.1 Introduction......Page 104
4.2.1 Operation......Page 106
4.2.2 Fabrication and Characterization......Page 111
4.2.3 Characteristics of the UTC-PD......Page 113
4.2.4 Photo Receivers......Page 129
4.3.1 Importance of High-output PDs......Page 132
4.3.3 Monolithic PD-EAM Optical Gate......Page 133
4.4.1 Basic Structure......Page 134
4.4.2 Design......Page 135
4.4.3 Optical Gating Characteristics of PD-EAM......Page 138
4.4.4 Fabrication......Page 140
4.4.5 Gating Characteristics......Page 142
4.4.6 Applications for Ultrafast All-Optical Signal Processing......Page 146
4.4.7 Future Work......Page 158
4.5 Summary and Prospects......Page 162
References......Page 163
5.1 Operation Principle......Page 170
5.1.1 Transition Wavelength......Page 171
5.1.3 Saturable Absorption......Page 172
5.1.4 Absorption Recovery Time......Page 173
5.1.5 Dephasing Time and Spectral Linewidth......Page 175
5.1.6 Gate Operation in Waveguide Structure......Page 177
5.2 GaN/AlN ISBT Gate......Page 179
5.2.1 Absorption Spectra......Page 180
5.2.2 Saturation of Absorption in Waveguides......Page 183
5.2.3 Ultrafast Optical Gate......Page 185
5.3 (CdS/ZnSe)/BeTe ISBT Gate......Page 187
5.3.1 Growth of CdS/ZnSe/BeTe QWs and ISBT Absorption Spectra......Page 188
5.3.2 Waveguide Structure for a CdS/ZnSe/BeTe Gate......Page 192
5.3.3 Characteristics of a CdS/ZnSe/BeTe Gate......Page 196
5.4.1 Device Structure and its Fabrication......Page 198
5.4.2 Saturation Characteristics and Time Response......Page 199
5.5 Cross-phase Modulation in an InGaAs/AlAs/AlAsSb-based ISBT Gate......Page 201
5.5.1 Cross-phase Modulation Effect and its Mechanisms......Page 202
5.5.2 Application to Wavelength Conversion......Page 207
5.6 Summary......Page 210
References......Page 211
6.1 Introduction......Page 216
6.2.1 Optical Gate Switch Type......Page 217
6.2.2 Coherent Type Conversion......Page 219
6.3.1 Model......Page 220
6.3.2 Asymmetric χ(3) for Positive and Negative Detuning......Page 225
6.3.3 Symmetric χ(3) in Quantum Dot SOAs......Page 227
6.4.1 Model......Page 229
6.4.2 The Effect of the Stop Band in DFB-LDs......Page 232
6.4.3 The Effect of the Depletion of Gain......Page 233
6.4.4 The Pulse Width Broadening in FWM Wavelength Conversion......Page 234
6.5.1 Wavelength Conversion of Short Pulses Using a DFB-LD......Page 235
6.5.2 Wavelength Conversion of 160-Gb/s OTDM Signal Using a Quantum Dot SOAs......Page 236
6.5.3 Format-free Wavelength Conversion......Page 237
6.5.4 Chromatic Dispersion Compensation of Optical Fibers Using FWM in DFB-LDs......Page 239
6.6 The Future View of Wavelength Conversion Using FWM......Page 240
References......Page 241
7.2.1 FESTA Experiments......Page 246
7.2.2 Test Bed Field Experiment......Page 250
7.2.3 Recent Transmission Experiments above 160-Gb/s......Page 251
7.3.1 Devices Described in this Book......Page 253
7.3.2 Necessity for New Functionality Devices and Technology......Page 255
7.4 Summary......Page 256
References......Page 257
Index......Page 258