Ultra-Wideband, Short-Pulse Electromagnetics 7

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book presents selected contributions of the Ultra-Wideband Short-Pulse Electromagnetics 7 Conference, including electromagnetic theory, scattering, Ultrawideband (UWB) antennas, UWB systems, ground penetrating radar, UWB communications, pulsed-power generation, time-domain computational electromagnetics, UWB compatibility, target detection and discrimination, propagation through dispersive media, and wavelet and multi-resolution techniques.

Author(s): Frank Sabath, Eric L. Mokole, Uwe Schenk, Daniel Nitsch
Edition: 1
Publisher: Springer
Year: 2007

Language: English
Pages: 854

038737728X......Page 1
Ultra-Wideband, Short-Pulse
Electromagnetics 7......Page 3
Copyright Page
......Page 4
Preface......Page 6
Table of Contents
......Page 8
1.1 Electromagnetic Topology: An Appropriate Method for Modern EM coupling Assessment......Page 15
1.3.2 Description of the Global Problem with Topological Networks......Page 16
1.4.2 General Topological Description......Page 18
1.4.4.1 General Background......Page 20
1.4.4.2 High Frequency Topological Breakdown......Page 21
1.5 Conclusion......Page 22
References......Page 23
2.1 Introduction......Page 25
2.2.2 System Interactions......Page 26
2.2.3 Network Equations......Page 27
2.3 Approach to System Interaction Simulation......Page 28
2.4 Results and Discussions......Page 30
2.5 Conclusions......Page 31
References......Page 32
3.1 Introduction......Page 33
3.2 ModalParameters in the Thin-Wire Model......Page 34
3.3 Modal Parameters for the Horizontal Thick Wire......Page 37
3.4 Conclusion......Page 42
References......Page 44
4.1 Introduction......Page 45
4.2.1 Scalar Potential......Page 46
4.2.2 Electrostatic Field......Page 48
4.3 Pulse Propagation on a Vertical Wire Antenna: Exact Formulation......Page 49
4.4 On Conductor Geometries that Can Produce TEM Field Structure......Page 50
References......Page 51
5.1 Introduction......Page 53
5.2 Backscattering Formulation......Page 54
5.3 Backscattering Dyadic......Page 55
Appendix: Surface Current Density for a Step-Function Plane Wave Incident on a Half Plane Parallel to the Half Plane and Perpendicular to the Edge......Page 57
References......Page 61
6.1 Introduction......Page 62
6.2 Problem Modeling......Page 63
6.3 The Scatterer System......Page 64
6.4 The Receiving Antenna......Page 65
References......Page 67
7.1 Introduction and Statement of the Problem......Page 68
7.2.1 Phase-Space Processing of the Scattered Field......Page 70
7.2.2 Phase-Space Green's Functions-General Formulation......Page 71
7.2.3.2 Asymptotic Evaluation in the Perturbed Medium......Page 72
References......Page 74
8.1 Introduction......Page 76
8.2 General Formulation......Page 77
8.3 Asymptotic Description in Debye-Type Dielectrics......Page 78
8.4 Optimal Pulse Penetration......Page 80
References......Page 82
9.1 Introduction......Page 83
9.2 Theoretical Formulation......Page 84
9.3 Numerical Results......Page 86
References......Page 90
10.1 Introduction......Page 92
10.2 Overview of the TDVIE Method......Page 93
10.3 TLM......Page 94
10.4.1.1 Gaussian Pulse Incident upon an Interface......Page 95
10.4.1.2 Gaussian Pulse Inside a Slab Whose Properties Change......Page 96
10.4.1.3 Resonator......Page 97
10.5 Conclusion......Page 98
References......Page 99
11.1 Introduction......Page 101
11.2 The Concept of the PEEC Method......Page 102
11.3 Multiconductor Transmission Line Configuration Excited by a Plane Wave......Page 103
11.4 Signal Integrity Analysis in Printed Delay Lines......Page 105
References......Page 108
12.1 Introduction......Page 109
12.3 Transfer Function Determination......Page 110
12.4 Transfer Function HAnt for an Ideal Dipole......Page 111
12.5.1 General Methodology......Page 112
12.5.2 The Simulation Work Performed......Page 113
12.5.3 Results......Page 114
12.7 Multipath and Channel Modeling......Page 115
References......Page 116
13.1 Introduction......Page 117
13.2.1 Representation of Radiation Patterns in Terms of Spherical Waves......Page 118
13.2.2 FD-TD Implementation of the Spherical Wave Source......Page 119
13.3 Application of the Spherical Wave Source to the Analysis of the WLAN Antenna Within the Aircraft Cabin......Page 121
References......Page 124
14.1 Introduction......Page 125
14.2.2 Mesh Truncation......Page 126
14.2.4 Computational Window......Page 127
14.3 Simulation Results......Page 128
14.4 Conclusions......Page 131
References......Page 132
15.1 Introduction......Page 133
15.2 Definition of Time-Domain Effective Height for Aperture-Radiating Antennas......Page 134
15.3 Efficient Representation of Impulsive Aperture Field......Page 135
15.4 Calculation of TD Effective Height......Page 136
15.5.1 Dipole-Driven Rectangular Slot......Page 137
15.5.2 Transmit-Receive Link by UWB Pyramidal Ridged Horns......Page 138
15.6 Conclusions......Page 139
References......Page 140
16.1 Introduction......Page 141
16.2.1 Improved Stability Criterion for Thin Sheets......Page 142
16.2.2 Efficient FDTD Simulation by Exploitation of Modem PC CPUs SIMD Extensions......Page 143
16.3.1 Basic Design of the Vivaldi Antenna......Page 145
16.3.2 Optimization of the Vivaldi Antenna......Page 146
16.3.3 UWB Antenna Characterization Using a Transfer Function......Page 147
16.4 Conclusion......Page 150
References......Page 151
17.1 Introduction......Page 152
17.2 Alternating Direction Implicit FDTD (ADI-FDTD)......Page 153
17.3 The Method of Moments in the Time Domain (MoMTD)......Page 155
17.4 Hybridization......Page 156
17.5 Results......Page 157
References......Page 159
18.1 Introduction or What Is a Higher Order Basis?......Page 160
18.2 Application to Integral Equations in Frequency-Domain......Page 161
18.3 Application to Finite Element Method in Frequency-Domain......Page 166
18.5 Conclusion......Page 167
References......Page 168
19.1 Introduction......Page 169
19.2 Integral Equations......Page 170
19.3.1 Basis Functions......Page 171
19.3.2 Testing Procedure......Page 172
19.4 Excitations......Page 173
19.5.1 A Simple Dipole......Page 174
19.6 Conclusions......Page 175
References......Page 180
20.1 Introduction......Page 182
20.2 Time Domain Coupled Integral Equations for General Dispersive Media with Supplementary Green Functions......Page 184
20.3 Discretization of the Integral Equations: Evaluation of Matrix Elements of the Dispersive Medium Green Function Via Complex Contour Integrals......Page 185
20.4 Application to Conductive Debye Medium......Page 187
References......Page 188
21.1 Introduction......Page 190
21.2 Analytical Part......Page 191
21.3 Numerical Part......Page 193
21.4 The Bipolar Transistor Model......Page 195
References......Page 197
22.1 Introduction......Page 198
22.2 Action of Two-Tone High-Frequency Excitation on Electronic System......Page 199
22.4 Synthesis of Nonlinear Compensators on the Basis of Picard's Series......Page 202
22.5 Synthesis of Nonlinear Compensators on the Basis of Volterra Polynomial......Page 204
References......Page 205
23.1 Introduction......Page 206
23.2 Transient Radiation and Reception......Page 207
23.3 Antenna Parameters in the Transient Mode......Page 209
References......Page 212
24.2 Far-Fields from Spherical TEM Waveon Circular Antenna Aperture......Page 213
24.3 Rotationally Symmetric Temporal Taper of Aperture Field......Page 215
24.4 Spherical TEM Aperture Field......Page 217
24.6 Synthesis of Radiated Waveform on Boresight......Page 218
24.6.1 Gate-Function Waveform......Page 219
24.7 Concluding Remarks......Page 220
References......Page 221
25.1 Introduction......Page 222
25.2.2 Shaping the Aperture......Page 224
25.2.3 Reorienting the Current Distribution......Page 226
25.3 Conclusions......Page 227
References......Page 230
26.1 Introduction......Page 231
26.2 IDRA Field Mapping-Far-Field......Page 232
26.3 Beam Mapping Measurements......Page 234
26.4 Test 2: System Antenna Measurements......Page 241
References......Page 244
27.1 Introduction......Page 246
27.3 IRA-tO Antenna Characteristics......Page 247
27.4 Discussion......Page 252
References......Page 254
28.1 Introduction......Page 255
28.2 Defocusing the Reflector......Page 257
28.3.2 E-Plane Responses......Page 259
28.4 Discussion......Page 260
28.5 Conclusions......Page 263
References......Page 264
29.1 Introduction......Page 265
29.2 Hardware......Page 266
29.3 Measurements of Two Farr Research IRAs......Page 267
29.5 Measurements of a Narda 640 Standard Gain Horn......Page 269
29.6 Return Loss Measurements of Printed Circuit LPDAs......Page 270
29.7 Discussion......Page 271
29.8 Conclusions......Page 272
References......Page 273
30.1 Introduction......Page 274
30.2.1 The Broadband Electric Dipole......Page 276
30.2.2 The Broadband Magnetic Dipole......Page 277
30.3.1 Interaction Between Component Antennas......Page 278
30.3.2 Complex Transfer functions for T.M01 and TE11 Modes......Page 279
References......Page 281
31.2 Input Pulse......Page 283
31.4 Traveling-Wave Property of Antennas......Page 284
31.5 Dipole Antenna......Page 285
31.6 Bicone Antenna......Page 289
31.7 TEM Horn Antenna......Page 292
31.8 Efficiency......Page 294
References......Page 295
32.1 Introduction......Page 296
32.3 Lens TEM Horn Characterization......Page 298
32.5 Discussion......Page 300
32.6 Concluding Remarks......Page 302
References......Page 303
33.1 Introduction......Page 304
33.2.1 General Information......Page 305
33.2.2 Broadband Horn Antennas Operating in the Frequency Range of 100 MHzto 5 GHz......Page 306
33.2.3 Broadband Horn Antenna Operating in the Freqnency Range of 5 GHz to 100 GHz......Page 307
33.3.1 EMI/EMC/EMP Testing......Page 308
33.3.2 Microwave Material Characterization/Testing......Page 310
33.4 Conclusions......Page 311
References......Page 312
34.1 Introduction......Page 313
34.2.2 Antenna Types......Page 314
34.3.1 TEM Horn Structure......Page 315
34.3.2 PLTLM Procedure......Page 316
34.3.3 PDTEM Horn Design......Page 317
34.3.4 Multisensor Adaptive Modeling......Page 318
34.4 Designs and Experimental Results......Page 319
References......Page 322
35.1 Introduction......Page 323
35.2 Antenna Development......Page 324
35.2.1 High Frequency Radar Antenna for the Investigation of Concrete Structures......Page 325
35.2.2 Radar Antenna for the Localization of Service Pipes in the Subsoil......Page 326
35.3 Investigation of Concrete Bridges......Page 329
References......Page 330
36.1 Introduction......Page 332
36.2 Design Considerations......Page 333
36.3.1 Antenna Return Loss......Page 334
36.3.2 Antenna Gain......Page 335
36.3.3 Radiation Patterns......Page 336
36.5 Conclusions......Page 338
References......Page 339
37.1 Introduction......Page 341
37.3 The Time Domain Friis-Formula......Page 342
37.4 Characteristic Values and Functions......Page 344
37.5 IRA Test Range......Page 347
References......Page 348
38.1 Introduction......Page 349
38.2 The Design Outline......Page 350
38.3 The Transition......Page 351
38.4.1 Layouts......Page 352
38.4.2 Antennas Matching......Page 353
38.4.3 Radiation Patterns......Page 355
38.4.4 Normalized Impulse Responses (NIR)......Page 357
38.5 Concluding Remarks and Future Work......Page 358
References......Page 359
39.1 Introduction......Page 361
39.3 Results......Page 362
39.3.2 Transfer Functions......Page 363
39.3.3 Radiation Field and Output Response......Page 365
39.4 Conclusions......Page 366
References......Page 368
40.1 Introduction......Page 370
40.2 Antenna Configurations......Page 371
40.3.1 Input Reflection Coefficient and Return Loss......Page 372
40.3.2 Radiation Patterns......Page 373
40.4 Conclusions......Page 376
References......Page 377
41.1 Introduction......Page 378
41.2 UWB Antennas and Systems......Page 379
41.3 Requirements for Source Pulses and Antennas......Page 380
41.4 Roll Monopoles forUWB Applications......Page 381
41.5 Conclusions......Page 385
References......Page 386
42.1 Introduction......Page 387
42.2 Theory......Page 388
42.3 Validation......Page 391
42.4 Application Example......Page 393
References......Page 397
43.2 Antenna Numerical Models......Page 398
43.2.2 Spherical Modes Expansion Modeling......Page 399
43.3.1 Problem Statement and Method of Analysis......Page 402
43.3.2 Signals, Antennas, and Channels......Page 403
43.3.3 Results......Page 405
References......Page 407
44.1 Introduction......Page 408
44.2 Modifications and Experimental Results......Page 409
44.3 Discussion and Future Plans......Page 414
References......Page 415
45.1 Introduction......Page 416
45.2 Antenna Concept......Page 417
45.3 Antenna Design......Page 418
45.4 Antenna Characteristics......Page 420
References......Page 423
46.1 Introduction......Page 424
46.2 Antennas Design......Page 425
46.3 Human Body Models for Numerical Electromagnetic Simulations......Page 426
46.4.1 Antenna Characteristics in a Free Space......Page 427
46.4.2 Antenna Characteristics Close to the Human Body......Page 432
46.5 Conclusions......Page 435
References......Page 436
47.2 Design......Page 437
47.2.1 Peaking Gap Switch......Page 438
47.2.3 Antenna......Page 439
47.4 Results......Page 440
References......Page 443
48.1 Introduction......Page 444
48.2 Setup......Page 445
48.3 Results......Page 446
48.4 Discussion and Conclusions......Page 449
References......Page 450
49.1 Introduction......Page 452
49.2.2 EM Modeling and Deconvulution of the Experimental Measurements......Page 453
49.2.2.3 Simulation Result and Evaluate the Plasma Channel Current by Deconvolution......Page 454
49.2.3.2 Simulation Results......Page 458
49.3 Conclusions......Page 460
References......Page 462
50.1 Introduction......Page 463
50.2 Blumlein Pulsers......Page 464
50.3.1 Diamond-Coated Photoconductive Switch......Page 466
50.4 Switch Performance and Lifetime......Page 468
References......Page 470
51.1 Introduction......Page 471
51.1.1.2 Pulse Sequences......Page 472
51.1.1.3 Spectral Distribution......Page 473
51.1.1.4 Energy Considerations......Page 474
51.2.1 Pulse Sequences and their Spectral Distributions......Page 475
51.2.2 Interaction of Unipolar Pulse Sequences on Mobile Phone Antennas......Page 477
References......Page 478
52.1 Introduction......Page 480
52.2 NEMP......Page 482
52.4 LPM......Page 483
52.5 HPM......Page 486
References......Page 487
53.1 Introduction......Page 488
53.2.2 The Shape of System Transfer Function......Page 489
53.2.3 Estimating the Shape......Page 490
53.2.4 Mathematical Norms for Assessing UWB Pulse Spectra......Page 491
53.2.5 Assessment and Comparative Vectors for UWB Pulses......Page 492
53.4 Measurement of Shape of a Generic System......Page 494
53.5 Effects of UWB Pulses in Microprocessor Boards......Page 496
53.7 Conclusion......Page 499
References......Page 500
54.2 Measurement Setup......Page 502
54.3 Test Setup......Page 503
54.4 Measurement Results......Page 504
54.4.1 Classification of the Destruction Effects......Page 505
54.4.3 System State Dependence of the Destruction Effects......Page 507
References......Page 509
55.1 Introduction......Page 510
55.2.1 GTEM Cell......Page 511
55.2.3 OATS Measurements......Page 512
55.3.1.3 Circular Radiation Pattern via Open Area Test Side......Page 513
55.3.2.1 Transmission Behavior......Page 515
55.3.2.2 Radiation Behavior......Page 516
References......Page 517
56.1 Introduction......Page 518
56.3 Superposition Measurements......Page 519
56.4 Statistical Analysis......Page 522
56.5 Emission Measurements......Page 524
56.6 Conclusion......Page 526
References......Page 527
57.1 Introduction......Page 528
57.2 Experimental Program......Page 529
57.3 Analysis......Page 530
57.5 System Interaction......Page 534
References......Page 535
58.1 Introduction......Page 536
58.2 Setup of the Near Field Scanner......Page 537
58.3 Synchronization of the Measured Data......Page 538
58.5 Calibration of the Probes and the Setup......Page 539
58.6.1 Measurement of Pulse Propagation......Page 540
58.6.2 Measurement of the Radiated Pulse of an IRA......Page 541
References......Page 542
59.1 Introduction......Page 543
59.4 Capacitive Pickoff with SMA Sensor......Page 544
59.5 Sensor Calibration......Page 545
59.6 High Voltage Marx Measurements......Page 548
59.7 Discussion......Page 549
References......Page 550
60.1 Introduction......Page 551
60.2.1 Calibration Procedure......Page 552
60.2.3 Coax to Microstrip Transition Modeling......Page 554
60.4 Applications......Page 555
60.5 Conclusions......Page 558
References......Page 559
61.1 Introduction......Page 560
61.2.2 Determination of the Signal in Time-Domain......Page 561
61.2.3 Used Antennas......Page 562
61.3.1 Frequency Domain Representation......Page 563
61.3.3 Time Frequency Representation......Page 564
References......Page 566
62.1 Introduction......Page 567
62.2 Background......Page 568
62.3 Brief History of UWB Radar......Page 572
62.4 Some Recent UWB Radars......Page 574
62.4.2 NRL MWM......Page 576
References......Page 578
63.1 Introduction......Page 582
63.2.1 Experimental Setup......Page 583
63.2.2 System Calibration......Page 584
63.3 Results and Discussions......Page 585
References......Page 588
64.1 Introduction......Page 589
64.2 Hardware and Measurement Geometry......Page 590
64.3 Experimental Measurements......Page 592
64.4 Data Observations......Page 597
64.5 Conclusions......Page 598
References......Page 599
65.1 Introduction......Page 600
65.3 Trihedral and WIPL-DP Geometries......Page 601
65.4 WIPL-D(P) Experiments......Page 602
65.4.1 Monostatic ReS......Page 604
65.4.2 Bistatic ReS......Page 606
References......Page 607
66.1 Introduction......Page 609
66.2 Architecture of the UWB Electronics......Page 610
66.3.1 Localization-Active Approach......Page 612
66.3.2 Localization-Passive Approach......Page 613
66.4.1 Detection of Individuals......Page 614
66.4.2 Localization of Individuals......Page 617
References......Page 618
67.1 Introduction......Page 619
67.2 Design Considerations......Page 620
67.3.2 Antenna System......Page 621
67.3.3 Receiver Chain......Page 622
67.4 Performance of the Radar......Page 623
References......Page 626
68.1 Introduction......Page 628
68.2 Modelling Scenarios......Page 629
68.3 UWB Radar Setup......Page 630
68.4 Simulation and Discussion......Page 631
68.5 Data Processing......Page 635
68.6 Experimental Setup and Measurements......Page 639
References......Page 641
69.1 Introduction......Page 642
69.2 Stripmap SAR......Page 643
69.3.2 Kirchhoff Migration......Page 645
69.3.3 Frequency-Wavenumber Migration......Page 646
69.4.1 The Equivalence of Kirchhoff and Frequency-Wavenumber Migration......Page 647
69.4.2 Comparison of the Different Methods......Page 648
69.5 Conclusion......Page 649
References......Page 650
70.1 Introduction......Page 651
70.2 Polarimetric Properties of the IRCTR Radar......Page 652
70.3 Polarimetric Analysis of A-Scans......Page 655
70.4 Polarimetric Analysis of Focused Images......Page 657
References......Page 659
71.1 Introduction......Page 661
71.2 Calculation of the FrFT of an Arbitrary Input Signal......Page 662
71.3 Optimization......Page 663
71.4.1 Wire Scatterer......Page 664
71.4.2 A Finite Closed Cylinder......Page 669
71.5 Conclusions......Page 672
References......Page 674
72.2 Protrusion on Perfectly Conducting Ground Plane......Page 675
72.3 Indentation in Perfectly Conducting Ground Plane......Page 677
72.4 Protrusion Near an Edge......Page 679
72.5 Separating Substructure Resonances from Full-Body Resonances......Page 680
72.6 Implications for ε-Pulse......Page 681
72.7 Concluding Remarks......Page 682
References......Page 683
73.1 Introduction......Page 684
73.2.1 Short-Time Fourier Transform (STFT)......Page 685
73.2.2 Continuous Wavelet Transform (CWT)......Page 686
73.3 Pulse Detection Capability in Noise......Page 687
73.4 Maximum Resolution Capability......Page 689
73.5 Measurement Results......Page 690
73.6 Conclusion......Page 691
References......Page 692
74.2 Singularity Expansion Method......Page 693
74.3 Building the Library......Page 694
74.4 Reading from the Library......Page 696
74.5 Results and Conclusion......Page 697
References......Page 699
75.2 Object Recognition by Vector Signals at Noise Background......Page 701
75.3 Calculation of Object Characteristics on the Basis of Cross-Polarized Field Components......Page 702
75.4 Calculation of Coordinates of the Sounding Object Bright Points......Page 704
75.5.1 Pulse Scattering on a Metal Strip......Page 706
75.5.2 Calculation of Bright Point Coordinates by the Results of Measurements and Simulation......Page 707
References......Page 708
76.1 Introduction......Page 709
76.2 Signal Processing Technique......Page 710
76.3 Numerical Simulation Results......Page 712
References......Page 716
77.1 Introduction......Page 717
77.2.1 Description of the Algorithm......Page 718
77.2.2 Application of the Algorithm......Page 721
77.3 Performance of the Energy-Based Detector......Page 722
77.4 Conclusions......Page 723
References......Page 724
78.1 Introduction......Page 726
78.2 Regularized Deconvolution......Page 727
78.3.1 Wigner Distribution and Resonant Zone......Page 729
78.3.2 Robust Singularities......Page 730
78.4 Experimental Results......Page 731
References......Page 733
79.1 Introduction......Page 734
79.2 Pulse Shaping for UWB Antennas......Page 735
79.3 Optimal Codesign of Antennas and Pulses for UWB Link......Page 737
79.4 Simplification for Transmitter and Receiver Hardware......Page 740
79.5 Conclusions......Page 742
References......Page 743
80.1 Introduction and Motivations......Page 744
80.2 System Model......Page 745
80.3 Signal Model and SNR Evaluation......Page 746
80.4 Conventional (B-PPM), DTR (B-PAM) and Tc-ADD (B-PPM) Receivers: A Performance Comparison......Page 750
80.5 Conclusions and Perspectives......Page 753
References......Page 755
81.1 Introduction......Page 756
81.2 System Model......Page 757
81.3.1 Maximum Likelihood Estimation of Pulse Parameters......Page 758
81.3.2 Modified Early-Late Gate......Page 760
81.4 Simulation Results......Page 761
References......Page 764
82.1 Introduction......Page 766
82.2.1 Lag Synchronization......Page 768
82.2.2 Phase Synchronization......Page 769
82.3 Experimental Study......Page 770
82.4 Conclusion......Page 773
References......Page 774
83.1 Introduction......Page 775
83.2 TimeDomain Measurements......Page 776
83.3 Simulations......Page 777
83.5 Conclusion......Page 779
References......Page 786
84.1 Introduction......Page 787
84.2 State of the Art......Page 788
84.3.1.1 Geometrical Modeling......Page 789
84.3.2 Ray-Tracing Method......Page 790
84.3.2.2 Ray Construction......Page 791
84.3.2.3 Field Computation using Uniform Theory of Diffraction......Page 792
84.3.3.2 Antennas......Page 793
84.3.3.4 Electromagnetic Properties of Materials......Page 794
84.3.3.5 Phase for Delay Conversion......Page 795
84.4 Solution Illustration......Page 796
84.4.1 Diffraction for a Wall......Page 797
84.4.2 Office with Cupboard......Page 799
84.4.3 Complex Real Building for LOS, NLOS, and Multiftoor Situations......Page 801
84.4.4 Coverage Maps......Page 802
84.4.5 Perspectives: Hybrid Model......Page 804
84.5 Conclusions......Page 805
References......Page 806
85.1 Introduction......Page 807
85.2.1 Received Voltage Signal Calculation......Page 808
85.3 Results......Page 811
85.4 Conclusion......Page 813
References......Page 814
86.1 Introduction......Page 815
86.2.2 Measurement of Channel Spatial Fluctuations......Page 816
86.2.3 Measurement of Channel Temporal Fluctuations......Page 817
86.3.2 Fluctuations of Total Received Power......Page 818
86.3.3 Evolution of Amplitude Distribution with Delay......Page 819
86.3.4 Dispersion of Total Received Power and Signal Bandwidth......Page 821
86.4 Conclusion......Page 822
References......Page 823
87.1 Introduction......Page 824
87.2.2 Calculation of the Bit Error Floor......Page 825
87.3 Conclusion......Page 828
References......Page 829
88.1 Introduction......Page 830
88.2 UWB Radar System Description......Page 831
88.3 Directional Coupler Theory......Page 832
88.4 Optimal Design......Page 833
88.6 Experimental Data......Page 834
References......Page 837
89.1 Introduction......Page 838
89.2 Linearizing the Phase Response......Page 841
89.3 Realisation of the Compensatory Networks......Page 842
89.4 Simulation Results of the Compensatory Networks......Page 846
89.5 Conclusion......Page 848
References......Page 850
Index......Page 851