Position estimation of wireless devices has many applications in short-range networks. Ultra-wideband (UWB) signals provide accurate positioning capabilities that can be harnessed in wireless systems to realize these applications. This title provides detailed coverage of UWB positioning systems, offering comprehensive treatment of signal and receiver design for ranging, range estimation techniques, theoretical performance bounds, ranging algorithms and protocols. Beginning with a discussion of the potential applications of wireless positioning, and investigating UWB signals for such applications, later chapters establish a signal processing framework for analyzing UWB positioning and ranging systems. The recent IEEE 802.15.4a standard related to UWB is also studied in detail. Each chapter contains examples, problems and Matlab scripts to help readers grasp key concepts. This is an ideal text for graduate students and researchers in electrical and computer engineering, and practitioners in the communications industry, particularly those in wireless communications.
Author(s): Zafer Sahinoglu, Sinan Gezici, Ismail GA?venc
Year: 2008
Language: English
Pages: 288
Cover......Page 1
Half-title......Page 3
Title......Page 5
Copyright......Page 6
Contents......Page 9
Preface......Page 11
1 Introduction......Page 15
1.1.1 Location-based applications and services......Page 16
1.2 Taxonomy of localization systems......Page 20
1.2.4 Data fusion and localization methods......Page 21
1.2.6 Indoor versus outdoor localization......Page 22
1.2.10 Relative coordinate versus absolute coordinate localization......Page 23
1.3.1 Applications of UWB localization......Page 24
Sapphire DART......Page 27
Ubisense......Page 31
Other UWB localization devices and technologies......Page 32
1.4 Problems......Page 33
2.1 Definition of UWB......Page 34
2.2 International regulations for UWB signals......Page 38
2.2.1 FCC regulations......Page 39
Communications systems......Page 40
Imaging systems......Page 41
Europe......Page 43
Japan......Page 44
2.3 Emerging UWB standards......Page 46
Transmitter structure......Page 47
Signal model......Page 50
System parameters......Page 51
Ranging and location awareness......Page 52
Channel allocations......Page 53
Transmitter structure and signal model......Page 54
System parameters......Page 55
2.4 Problems......Page 56
3 Ultra-wideband channel models......Page 58
3.1 UWB versus narrowband......Page 59
3.1.2 Propagation in a realistic environment......Page 60
3.2.1 Path loss......Page 63
3.2.3 Power delay profile......Page 64
Mean excess delay and RMS delay spread......Page 66
3.3 UWB channel measurement campaigns......Page 67
3.3.1 2–10 GHz band......Page 68
Analysis of ranging-related parameters......Page 70
3.3.2 Below 1 GHz band......Page 72
3.3.3 57–66 GHz band......Page 73
3.4 Problems......Page 75
4 Position estimation techniques......Page 77
4.1.1 Received signal strength (RSS)......Page 78
4.1.2 Angle of arrival (AOA)......Page 81
4.1.3 Time of arrival (TOA)......Page 84
4.1.4 Time difference of arrival (TDOA)......Page 86
4.1.5 Other measurement types......Page 87
4.2.1 Mapping techniques......Page 88
Geometric techniques......Page 90
Statistical techniques......Page 93
CRLB......Page 99
Geometric dilution of precision......Page 104
Circular error probability......Page 105
4.3 Position tracking......Page 106
4.3.1 Kalman filters......Page 107
4.3.3 Particle filters......Page 110
4.4 Problems......Page 111
5.1 Time-based positioning......Page 115
5.2.1 Multipath propagation......Page 117
5.2.3 Obstructed line of sight propagation......Page 121
5.3 Time-based ranging......Page 122
5.3.1 Direct sampling receiver......Page 125
5.3.2 Matched filter receiver......Page 126
5.3.3 Energy detection receiver......Page 127
5.3.4 Delay-and-correlate receiver......Page 128
5.4 Fundamental limits for time-based ranging......Page 131
5.4.1 Cramer–Rao lower bounds for single-path channels......Page 134
5.4.2 Cramer–Rao lower bounds for multipath channels......Page 135
5.4.3 Ziv–Zakai lower bounds for single-path channels......Page 136
5.4.4 Ziv–Zakai lower bounds for multipath channels......Page 138
5.5.1 ML estimation with full a-priori information......Page 139
5.5.2 ML estimation with no prior information......Page 140
5.5.3 Ranging with generalized maximum likelihood ratio test......Page 141
5.5.4 Sub-Nyquist sampling ML estimation with different levels of a-priori information......Page 142
Multiple hypothesis testing system model......Page 143
Maximum energy sum selection......Page 144
Weighted maximum energy sum selection......Page 145
Bayesian estimation......Page 146
Search and subtract......Page 147
Search, subtract, and readjust......Page 148
Second step......Page 149
5.6.3 Ranging with dirty templates......Page 150
5.6.4 Threshold-based ranging......Page 152
Threshold-based ranging with jump back and search forward algorithm......Page 153
Threshold-based ranging with serial backward search algorithm......Page 155
5.7 Problems......Page 159
6 Ranging protocols......Page 162
6.1 Layered protocols......Page 163
6.2 Time-based ranging protocols......Page 164
6.2.1 Two-way time-of-arrival-based ranging......Page 165
6.2.2 Differential two-way ranging protocols......Page 167
6.2.3 Symmetric double-sided ranging protocol......Page 169
6.2.4 Time-difference of arrival (TDOA)......Page 171
6.3 Ranging in IEEE 802.15.4a standard......Page 172
6.3.1 Preamble structure......Page 174
6.3.2 Start of frame delimiter design......Page 176
6.3.4 Ranging-related PHY PIB attributes......Page 179
6.3.5 MAC PIB attributes......Page 181
6.3.6 Counter management for ranging......Page 182
6.3.7 Ranging figure of merit (FoM)......Page 183
6.3.8 Mitigation of clock frequency offsets......Page 185
6.3.9 Time-stamp reports......Page 188
PD-Data.confirm......Page 189
MCPS-Data.indication......Page 190
PLME-Calibrate.request......Page 191
6.3.12 Exemplified use of the primitives via the TW-TOA protocol......Page 192
6.4 Problems......Page 194
7 Special topics in ranging......Page 195
7.1 Interference mitigation......Page 196
7.1.1 Narrowband interference mitigation......Page 197
7.1.2 Multiuser interference models......Page 199
7.1.3 Multiuser interference in IEEE 802.15.4a networks......Page 201
7.1.4 Multiuser interference mitigation in TH-IR UWB......Page 206
7.2 Coded payload modulation......Page 210
7.3.1 Challenge–response......Page 212
7.3.3 Randomizing turn-around time......Page 213
7.3.5 Dynamic preamble selection......Page 214
7.4 Problems......Page 216
8.1.1 Performance metrics......Page 217
8.1.2 Selection of signal parameters......Page 219
8.2 Link budget calculations......Page 224
8.3.1 Transmitter......Page 228
UWB pulse generation......Page 229
UWB antennas......Page 232
8.3.2 Receiver......Page 235
Analog-to-digital conversion......Page 237
8.4 Problems......Page 239
9.1 Development of accurate ranging/positioning algorithms......Page 241
9.2 Training-based systems and exploiting the side information......Page 243
9.3 NLOS mitigation......Page 245
9.4 Multiple accessing and interference mitigation......Page 246
9.5 Cognitive ranging and localization......Page 247
9.6 Anchor placement......Page 249
9.7 UWB radar in health-care......Page 250
9.8 UWB for simultaneous localization and mapping......Page 251
9.9 Secure ranging and localization......Page 252
9.10 Concluding remarks......Page 254
References......Page 255
Index......Page 279