Author(s): Dyke, Phil P. G
Publisher: Wiley Blackwell
Year: 2018
Language: English
Pages: 382
Tags: Calculus of variations.
Content: Preface xi 1 Revision of One-Dimensional Calculus 1 1.1 Limits and Convergence 1 1.2 Differentiation 3 1.2.1 Rules for Differentiation 5 1.2.2 Mean Value Theorem 7 1.2.3 Taylor's Series 8 1.2.4 Maxima and Minima 12 1.2.5 Numerical Differentiation 13 1.3 Integration 16 Exercises 22 2 Partial Differentiation 25 2.1 Introduction 25 2.2 Differentials 29 2.2.1 Small Errors 30 2.3 Total Derivative 33 2.4 Chain Rule 36 2.4.1 Leibniz Rule 39 2.4.2 Chain Rule in n Dimensions 41 2.4.3 Implicit Functions 42 2.5 Jacobian 43 2.6 Higher Derivatives 46 2.6.1 Higher Differentials 49 2.7 Taylor'sTheorem 50 2.8 Conjugate Functions 52 2.9 Case Study:Thermodynamics 54 Exercises 58 3 Maxima and Minima 61 3.1 Introduction 61 3.2 Maxima, Minima and Saddle Points 63 3.3 Lagrange Multipliers 74 3.3.1 Generalisations 77 3.4 Optimisation 81 3.4.1 Hill Climbing Techniques 81 Exercises 85 4 Vector Algebra 89 4.1 Introduction 89 4.2 Vector Addition 90 4.3 Components 92 4.4 Scalar Product 94 4.5 Vector Product 97 4.5.1 Scalar Triple Product 102 4.5.2 Vector Triple Product 105 Exercises 106 5 Vector Differentiation 109 5.1 Introduction 109 5.2 Differential Geometry 111 5.2.1 Space Curves 112 5.2.2 Surfaces 120 5.3 Mechanics 129 Exercises 135 6 Gradient, Divergence, and Curl 139 6.1 Introduction 139 6.2 Gradient 139 6.3 Divergence 143 6.4 Curl 145 6.5 Vector Identities 146 6.6 Conjugate Functions 151 Exercises 154 7 Curvilinear Co-ordinates 157 7.1 Introduction 157 7.2 Curved Axes and Scale Factors 157 7.3 Curvilinear Gradient, Divergence, and Curl 161 7.3.1 Gradient 161 7.3.2 Divergence 163 7.3.3 Curl 165 7.4 Further Results and Tensors 166 7.4.1 Tensor Notation 166 7.4.2 Covariance and Contravariance 168 Exercises 171 8 PathIntegrals 173 8.1 Introduction 173 8.2 Integration Along a Curve 173 8.3 Practical Applications 181 Exercises 186 9 Multiple Integrals 191 9.1 Introduction 191 9.2 The Double Integral 191 9.2.1 Rotation and Translation 199 9.2.2 Change of Order of Integration 201 9.2.3 Plane Polar Co-ordinates 203 9.2.4 Applications of Double Integration 208 9.3 Triple Integration 213 9.3.1 Cylindrical and Spherical Polar Co-ordinates 219 9.3.2 Applications of Triple Integration 227 Exercises 233 10 Surface Integrals 241 10.1 Introduction 241 10.2 Green's Theorem in the Plane 242 10.3 Integration over a Curved Surface 246 10.4 Applications of Surface Integration 253 Exercises 256 11 Integral Theorems 259 11.1 Introduction 259 11.2 Stokes' Theorem 260 11.3 Gauss' DivergenceTheorem 268 11.3.1 Green's Second Identity 275 11.4 Co-ordinate-Free Definitions 277 11.5 Applications of Integral Theorems 279 11.5.1 Electromagnetic Theory 279 11.5.1.1 Maxwell's Equations 279 11.5.2 Fluid Mechanics 283 11.5.3 ElasticityTheory 287 11.5.4 Heat Transfer 297 Exercises 298 12 Solutions and Answers to Exercises 301 References 375 Index 377