Cover......Page 1
Editor-in-Chief......Page 2
Volume Editors......Page 3
Preface......Page 4
1.01 Overview......Page 7
Developments from the Late Nineteenth Century until the Early 1950s......Page 8
Developments from 1950s through the Early 1980s......Page 12
From 1980 to Present: The Era of Tomography and Broadband Digital Seismic Networks......Page 18
Current Issues in Global Tomography......Page 24
References......Page 31
Relevant Website......Page 35
Introduction......Page 36
Hamilton’s Principle and the Equations of Motion......Page 37
The Generalized Spherical Harmonics......Page 42
The Green’s Function for the Spherically Symmetric Earth......Page 45
Numerical Solution......Page 50
Elastic Displacement as a Sum over Modes......Page 57
The Normal Mode Spectrum......Page 58
Normal Modes and Theoretical Seismograms in Three-Dimensional Earth Models......Page 63
Concluding Discussion......Page 68
References......Page 69
Free Oscillations......Page 71
What We See in Seismograms - The Basics......Page 73
Modes of a Spherically Symmetric Earth......Page 75
Mode splitting......Page 77
Mode coupling......Page 81
Measuring Mode Observables......Page 85
Multiplet stripping and degenerate mode frequencies......Page 86
Singlet and receiver stripping......Page 89
Retrieving the splitting matrix with iterative spectral fitting......Page 90
Observed mode coupling......Page 92
Example of a Mode Application: IC Rotation......Page 95
Example of a Mode Application: Earth’s Hum......Page 96
Standing Waves and Traveling Waves......Page 98
The Measurement of Fundamental Mode Dispersion......Page 102
Group velocity......Page 105
Phase velocity......Page 107
Time variable filtering......Page 110
Other Surface Wave Observables......Page 111
Higher mode dispersion and waveform modeling......Page 113
Love waves and overtones......Page 117
Surface Waves and Structure at Depth......Page 118
Concluding Remarks......Page 121
References......Page 122
Relevant Website......Page 129
Introduction......Page 130
Intuitive Approach......Page 133
Elastodynamic Equations and Wave Equations......Page 134
Rays and Wave Fronts......Page 135
Variational Approaches of Ray Tracing......Page 136
Transport Equation......Page 137
Acoustic and Elastic Ray Theory......Page 138
Paraxial Ray Theory......Page 139
Ray Tracing Tools......Page 140
Boundary Conditions, Continuity, Reflection/
Transmission Coefficients......Page 141
WKBJ summation......Page 142
Gaussian beam summation......Page 144
Coherent-state transformation technique......Page 145
Geometrical Theory of Diffraction......Page 146
Ray+Born/Rytov Formulation......Page 147
Ray+Kirchhoff Approximation......Page 148
Finite Frequency Effects on Ray Functions......Page 150
Conclusion......Page 151
References......Page 153
Introduction......Page 159
Elastic Velocities and Polarizations......Page 161
Common Structural Effects on Waveforms......Page 163
Deep-Earth Structural Problems......Page 166
Modeling Algorithms and Codes......Page 167
Reflectivity......Page 168
WKBJ-Maslov......Page 170
Full-Wave Theory and Integration in Complex p Plane......Page 172
DRT and Gaussian Beams......Page 173
Modal Methods......Page 174
Numerical Methods......Page 175
Homogeneous Layers Separated by Curved or Tilted Boundaries......Page 178
General 3-D Models......Page 179
Instrument and Source......Page 180
Far-Field Source Time Function......Page 181
Frequency-Dependent Ray Theory......Page 183
Attenuation......Page 184
Anisotropy......Page 185
Scattering......Page 186
References......Page 187
Relevant Websites......Page 191
Introduction......Page 192
The Challenge......Page 193
Equation of Motion......Page 195
Finite Difference Method......Page 197
Pseudospectral Method......Page 198
Weak Implementations......Page 200
Rayleigh-Ritz Method......Page 201
Coupled mode method......Page 202
Direct solution method......Page 203
Finite Element Method......Page 204
Spectral Element Method......Page 207
Discussion and Conclusions......Page 211
References......Page 214
Introduction......Page 219
Geometrical Preliminaries......Page 220
Modal Decomposition......Page 222
Receiver Functions and the Property of Minimum Phase......Page 224
Improved Teleseismic P Green’s Functions......Page 225
Teleseismic S Green’s Functions......Page 227
Deconvolution, Stacking,
and Array Processing......Page 228
Least-Squares Optimization......Page 229
Monte Carlo Inversion......Page 230
Born Inversion and Classic (Delay-and-Sum) Studies......Page 231
Multidimensional Inversion......Page 235
Beyond the Born Approximation......Page 238
The Inverse-Scattering Series......Page 239
Transmission to Reflection......Page 240
Conclusions......Page 242
References......Page 243
Introduction......Page 247
Vertical-Incidence and Wide-Angle Seismology......Page 248
Reflection Seismology......Page 250
The CMP Method in Reflection Seismology......Page 253
Migration......Page 255
Back-Propagation Operators......Page 256
Reflection Seismology Examples......Page 258
Refraction/Wide-Angle Seismology......Page 260
Wide-Angle Seismology Experiments......Page 261
Model Dimension......Page 263
Forward Modeling......Page 264
Traveltime Inversion and Tomography: Theory and Practical Issues......Page 265
Traveltime Inversion and Tomography: Algorithms......Page 270
S-Waves, Density, Attenuation,
and Anisotropy......Page 272
Fine-Scale Heterogeneities......Page 273
Model Assessment......Page 274
Wide-Angle Migration......Page 276
Wavefield Inversion......Page 277
Wavefield Inversion Examples......Page 279
Future Directions......Page 280
References......Page 283
Relevant Website......Page 288
Introduction......Page 289
Basic General Theory......Page 290
Different Parametrizations of the Elastic Coefficients......Page 292
Ray Theory......Page 294
Surface Waves and Normal Modes......Page 296
Crustal Anisotropy......Page 301
Origin of Upper-Mantle Anisotropy......Page 302
Traveltime Residuals and Lithospheric Anisotropy......Page 304
SKS Waves and Upper-Mantle Anisotropy......Page 306
P and S Waves and Subduction Zones......Page 308
Surface Waves and Upper Mantle......Page 309
Polarization of Surface Waves......Page 311
Converted Waves and Lithospheric Anisotropy......Page 312
PKP Waves and the Inner Core......Page 314
References......Page 315
Introduction to Seismic Tomography......Page 322
Data Types in Seismic Tomography......Page 324
Body Waves......Page 326
Surface Waves......Page 327
Normal Modes......Page 328
Waveforms......Page 329
Cells, Nodes,
and Basis Functions......Page 330
Irregular Cell and Adaptive Mesh Methods......Page 333
Linear versus Nonlinear Solutions......Page 335
Generalized inverse and damped least-squares solutions......Page 337
Occam’s inversion and Bayesian methods......Page 339
Hypocenter-Structure Coupling......Page 340
Static (Station) Corrections Revisited......Page 341
Double-Difference Tomography......Page 342
Data Coverage......Page 343
Model Resolution Analysis......Page 347
Hypothesis Testing......Page 349
Future Directions......Page 352
References......Page 353
Introduction, Purpose, and Scope......Page 360
Geology, Tectonics, and Earth History......Page 363
Active-Source Data......Page 365
Seismic refraction/wide-angle reflection profiles......Page 367
Seismic reflection profiles......Page 368
Passive-Source Data......Page 369
Receiver Functions......Page 371
Vp-Vs relations and poisson’s ratio......Page 372
Seismic anisotropy and the uppermost mantle......Page 373
Gravity Anomalies......Page 374
Aeromagnetics......Page 375
Heat Flow Data......Page 378
Structure of Oceanic Crust and Passive Margins......Page 379
Typical Oceanic Crust......Page 380
Oceanic Plateaux and Volcanic Provinces......Page 383
Ocean Trenches and Subduction Zones......Page 386
Passive Continental Margins......Page 387
Principal Crustal Types......Page 388
Global Crustal Models......Page 393
The Crystalline Crust and Uppermost Mantle......Page 394
Discussion and Conclusions......Page 396
References......Page 397
Depth Extent of Anomalous Structure......Page 417
Form of Shallow Upwelling and Onset of Melting......Page 418
Flow in the Mantle......Page 421
General Seismic Structure of the Oceanic Crust......Page 422
Fast-to-Superfast-Spreading Ridge Crustal Structure......Page 424
Intermediate Spreading Rate Ridge Crustal Structure......Page 428
Slow-Spreading Ridge Crustal Structure......Page 430
Ultraslow-Spreading Ridge Crustal Structure......Page 434
References......Page 435
Origin of the Hot-Spot Concept......Page 442
Potential Significance of Hot Spots......Page 448
Large Igneous Provinces......Page 449
Aseismic Ridges......Page 452
Superswells......Page 453
Mid-Plate Volcanic Chains and Clusters......Page 455
Orientation and Age......Page 456
Depth and Subsidence......Page 457
Geoid Height......Page 458
Elastic Plate Thickness......Page 459
Heat Flow......Page 460
Sedimentary Structures......Page 464
Volcanic Crust and Underplating......Page 465
Mantle Lithosphere......Page 469
Emerging View on Geophysical Structure of Hot Spots and Swells......Page 470
References......Page 471
1.14 Crust and Lithospheric Structure - Natural Source Portable Array Studies of Continental Lithosphere......Page 476
Introduction......Page 477
Instrumentation......Page 479
Field Installations and Data Acquisition......Page 481
Body wave tomography......Page 482
Surface wave tomography......Page 483
Discontinuity imaging......Page 484
Methodological Weaknesses and Caveats......Page 486
Snake River Plain/Yellowstone and Wyoming Craton......Page 488
Southern Rocky Mountain region......Page 489
Rio Grande Rift and Colorado Plateau......Page 490
Great Basin......Page 494
Crustal structure......Page 495
Seismic structure of uppermost mantle......Page 496
Continental Margin Subduction Zones......Page 498
Andean studies......Page 499
Alaska......Page 505
Kamchatka......Page 507
Central and Eastern North America......Page 508
Australia......Page 511
Archean Cratons......Page 514
Mantle tomographic images......Page 516
Crustal thickness and Moho structure beneath southern Africa......Page 517
Passive Array Studies of Other Cratons......Page 520
Seismic Constraints on Composition and Temperature of the Continental Lithosphere......Page 521
Discussion......Page 522
References......Page 523
Relevant Websites......Page 528
Introduction - Regional Geologic/Tectonic Setting of the Central Europe......Page 529
A New Generation of Long-Range Seismic Experiments......Page 531
Characteristics of the Seismic Wave Fields along Profiles for Different Tectonic Provinces (Terranes)......Page 533
Examples of 2-D and 3-D Modeling of the Earth’s Crust and Lower Lithosphere......Page 537
POLONAISE’97 Crustal and Lithospheric Models (Profiles P4 and P1)......Page 538
SUDETES 2003 Crustal Model (Profile S02)......Page 541
CELEBRATION 2000 Crustal Models CEL05 and CEL01......Page 542
Example of 3-D Tomographic Modeling......Page 545
Geotectonic Models of the TESZ and the Transition from the EEC to the Carpathians and the Pannonian Basin......Page 546
POLONAISE’97 Area......Page 548
CELEBRATION 2000 Area......Page 549
Summary......Page 551
References......Page 552
Introduction......Page 555
First-Order Perturbation Theory......Page 556
Effect of Anisotropic Heterogeneities on Normal Modes and Surface Waves......Page 558
Comparison between Surface Wave Anisotropy and SKS Splitting Data......Page 560
Data space: d......Page 561
Finite-frequency effects......Page 563
Inverse Problem......Page 564
Isotropic and Anisotropic Images of the Upper Mantle......Page 567
Geodynamic Applications......Page 569
Oceanic Plates......Page 570
Continents......Page 572
Velocity and Anisotropy in the Transition Zone......Page 573
Appendix 1: Effect of Anisotropy on Surface Waves in the Plane-Layered Medium......Page 575
Love Waves......Page 577
Rayleigh Waves......Page 578
References......Page 580
Relevant Websites......Page 585
Glossary......Page 586
Introduction......Page 587
Global Transition Zone Structure......Page 589
Japan......Page 592
Andes......Page 593
Additional observations......Page 594
North America......Page 595
Oceans......Page 596
520 discontinuity......Page 597
Summary of the Upper-Mantle Transition Zone......Page 598
The Gutenberg Discontinuity......Page 599
The Lehmann Discontinuity......Page 603
Summary of the Lehmann Discontinuity......Page 604
Conclusions......Page 605
References......Page 606
Glossary......Page 614
Lower Mantle and DPrime Basic Structural Attributes......Page 615
Mineralogical Structure......Page 616
Body-Wave Traveltime and Slowness Constraints......Page 617
Surface-Wave/Normal-Mode Constraints......Page 618
Attenuation Structure......Page 619
Seismic Tomography......Page 620
Dynamical Structures......Page 622
Large-Scale Seismic Velocity Attributes......Page 625
Thermal Boundary Layer Aspect......Page 626
DPrime Discontinuities......Page 627
Seismic Wave Triplications......Page 628
Phase Change in Perovskite......Page 629
Large Low-Shear-Velocity Provinces......Page 631
Seismic Velocity Properties......Page 632
Seismic Phases Used for Detection......Page 634
Partial Melting and Chemical Anomalies......Page 635
Lower-Mantle Anisotropy......Page 636
Mineralogical/Dynamical Implications......Page 637
Scattering in DPrime......Page 638
Conclusions......Page 639
References......Page 640
1.19 Deep Earth Structure - The Earth’s Cores......Page 650
Indirect Evidences for the Existence of a Core,
and Historical Controversies......Page 651
The Seismological Detection of the Liquid Core and Inner Core......Page 652
Body-Wave Seismology: The Core Phases......Page 653
Free Oscillations......Page 654
Radial Structure of the Core in Global Earth Models......Page 656
The topography of the CMB......Page 658
The Inner Core Boundary......Page 659
The Main Questions Relative to Liquid Core Structure......Page 660
The Stratification at the Top of the Liquid Core......Page 661
The Attenuation in the Liquid Core......Page 662
Evidence for anisotropy in P-velocity......Page 663
Depth dependence of the anisotropy......Page 664
Origin of the anisotropy......Page 666
Lateral Heterogeneities inside the Inner Core......Page 667
Attenuation in the Inner Core......Page 668
The apparent incompatibility of body wave and normal mode results......Page 670
The anisotropy in attenuation......Page 672
S-Waves and the Rigidity of the Inner Core......Page 673
Tracking the Drift of a Heterogeneity along a Stable Seismic Path......Page 674
Discussion......Page 677
Summary of the Results......Page 680
The Open Questions, the Future Challenges,
the Data for the Future......Page 681
References......Page 682
Introduction......Page 689
Single-Scattering Theory and Random Media......Page 690
Q notation and definitions......Page 691
Finite Difference Calculations and the Energy Flux Model......Page 692
Multiple-Scattering Theories......Page 694
Scattering Observations......Page 697
S Coda......Page 698
P Coda......Page 700
Pdiff Coda......Page 703
PP and P’P’ Precursors......Page 704
PKP Precursors......Page 706
PKKP Precursors and PKKPX......Page 709
PKiKP and PKP Coda and Inner-Core Scattering......Page 711
Other Phases......Page 713
Discussion......Page 714
References......Page 715
1.21 Deep Earth Structure – Q of the Earth from Crust to Core......Page 724
Frequency Dependence of Q......Page 725
Early Studies......Page 727
1-D Global Mantle Q Models......Page 728
Attenuation in the Inner Core......Page 731
Hemispherical variations......Page 732
Early studies......Page 733
Anelasticity and focusing......Page 735
Current status......Page 737
Global Body-Wave Studies......Page 738
Multiple ScS Studies......Page 740
Other Body-Wave Studies......Page 742
Q or Attenuation Determinations for Seismic Waves in the Crust......Page 744
Spectral decay methods in which source effects cancel – Regional phases......Page 745
Spectral decay methods in which source effects cancel – Fundamental-mode surface waves......Page 746
Spectral decay methods for which assumptions are made about the source spectrum – Regional phases......Page 748
Tomographic Mapping of Crustal Q......Page 750
QLgC, QLg, and Q tomography in regions of Eurasia......Page 753
QLgC, QLg, and P/S tomography in North America......Page 757
Variation of crustal Q with time......Page 758
Conclusions......Page 759
References......Page 760
Relevant Website......Page 767
Introduction......Page 768
Overview......Page 770
One-Dimensional Lattice Dynamics and the Continuum Limit......Page 771
Experimental Methods......Page 772
3-D Lattice Dynamics: Polarization and Anisotropy......Page 773
Nontrivial Crystal Structures,
Optic Modes, and Thermodynamics......Page 777
Influence of Pressure and Temperature on the Elastic Constants......Page 781
Composites Theory......Page 783
Attenuation and Dispersion......Page 786
Scaling......Page 789
Uncertainties......Page 790
Implications for Inversions......Page 792
References......Page 793
Introduction......Page 797
Convection-Related Surface Observations......Page 799
Evidence for Mantle Flow in Correlations between Internal Structure and Surface Gravity Anomalies......Page 801
Governing equations......Page 803
Spectral treatment of the mantle flow equations......Page 806
Internal boundary conditions......Page 807
Boundary conditions at Earth’s solid surface......Page 809
Boundary conditions at CMB......Page 811
Determining viscous flow Green functions......Page 812
Incorporating tectonic plates as a surface boundary condition......Page 813
Geodynamic Response Functions for the Mantle......Page 816
Depth Dependence of Mantle Viscosity......Page 817
Modeling Geodynamic Observables with Seismic Tomography......Page 821
Seismic Heterogeneity Models......Page 822
Mantle Density Anomalies......Page 823
Predicted Tectonic Plate Motions......Page 826
Predicted Free-Air Gravity Anomalies......Page 828
Predicted Dynamic Surface Topography......Page 829
Predicted CMB Topography......Page 835
Tomography-Based Geodynamic Inferences of Compositional Heterogeneity......Page 838
Constraints from Mineral Physics......Page 839
Compositional Density Anomalies Inferred from Joint Shear- and Bulk-Sound Tomography......Page 841
Compositional Density Anomalies Inferred from 'Hot’ and
'Cold’ Mantle Heterogeneity......Page 842
Diffuse Mid-Mantle Compositional Horizon......Page 844
Concluding Remarks......Page 845
References......Page 846
2.01 Overview - Mineral Physics: Past, Present, and Future......Page 851
References......Page 855
Introduction......Page 857
Overview......Page 858
Upper Mantle......Page 860
Transition Zone......Page 862
Lower Mantle......Page 865
Core......Page 867
Temperature......Page 869
Composition......Page 870
Phase......Page 871
Upper Mantle......Page 872
DPrime Layer......Page 873
Influence of Temperature......Page 874
Speculations on the Influence of Pressure......Page 875
References......Page 876
Introduction......Page 883
High-Pressure Technology......Page 884
Ab Initio Calculation......Page 886
Pressure Scale......Page 887
MgSiO3......Page 888
MgSiO3-FeSiO3......Page 889
MgSiO3-Al2O3......Page 890
MgO-FeO......Page 891
CaSiO3......Page 892
SiO2......Page 893
MgAl2O4, NaAlSiO4......Page 894
Phase D,
delta-AlOOH......Page 895
Chemical Compositions and Density Calculations......Page 896
Pyrolite......Page 898
Harzburgite......Page 899
The 660km Discontinuity......Page 900
Middle Parts of the Lower Mantle......Page 901
Postperovskite Transition and the DPrime Layer......Page 903
Summary......Page 905
References......Page 906
Introduction......Page 913
Concentrations in the Primitive Upper Mantle and Bulk Silicate Earth......Page 914
Differentiation of the Silicate Earth and Formation of Deep-Mantle Reservoirs......Page 915
Crystal-Melt Partition Coefficients and Controlling Factors......Page 916
Crystallochemical control......Page 917
Effects of pressure, temperature, and composition......Page 918
Effects of Al content on large trivalent and tetravalent cations......Page 919
Crystal chemistry......Page 920
Substitution mechanisms in calcium silicate perovskite......Page 921
Effects of melt composition......Page 922
Comparison between CaTiO3 and CaSiO3 perovskites......Page 923
Ferropericlase......Page 924
A Primitive Majoritic or Perovskitic Reservoir?......Page 925
Recycled Lithosphere in the Deep Mantle?......Page 927
Water Solubility in Minerals from the Transition Zone......Page 928
Water and sharpness of the 410km discontinuity......Page 929
Water Solubility in Lower-Mantle Minerals......Page 932
Calcium silicate perovskite......Page 933
Conclusions......Page 934
References......Page 935
Introduction......Page 940
Anisotropy and Layering in the Inner Core......Page 941
Super-Rotation of the Inner Core......Page 943
The Structure of Iron in the Inner Core......Page 944
Thermodynamic Properties from Free Energies......Page 947
Heat capacity......Page 948
Grüneisen parameter......Page 949
Elasticity of Solid Iron......Page 950
Slip Systems in Iron......Page 951
Viscosity and the Inner Core......Page 953
The Temperature in the Earth’s Core......Page 955
Viscosity and Diffusion......Page 957
Evolution of the Core......Page 959
Bulk Composition......Page 960
Chemical potential calculations of FeX binary systems......Page 961
High-temperature elasticity of FeSi and FeS......Page 963
Summary......Page 965
References......Page 966
2.06 Theory and Practice - Thermodynamics, Equations of State, Elasticity, and Phase Transitions of Minerals at High Pressures and Temperatures......Page 970
Differential Relations......Page 971
Partition Function......Page 972
Harmonic Approximation......Page 973
Debye model......Page 974
General harmonic potential......Page 975
Quantum Effects in Thermodynamics......Page 976
Thermodynamic Perturbation Theory......Page 977
Beyond the QHA......Page 978
Mie-Grüneisen EOS......Page 980
Analytical static EOS......Page 981
EOS, internal strain, and phase transitions......Page 983
Elastic Constants......Page 984
Cauchy relations......Page 987
Birch’s law and effects of temperature on the elastic constants......Page 988
Classifications of Phase Transitions......Page 989
Landau Theory of First- and Second-Order Transitions......Page 990
Shortcomings of Landau Theory......Page 991
Ginzburg-Landau Theory......Page 992
Ising Spin Model......Page 993
Isosymmetric Transitions......Page 994
Pressure-Induced Amorphization......Page 995
Polytypism of MgSiO3 Post-Perovskite and Anisotropy of the Earth’s DPrime layer......Page 996
Spin Transition in (Mg, Fe)O Magnesiowüstite......Page 997
References......Page 998
Deep Earth Mineralogy and Mineral Physics......Page 1002
Experimental Vibrational Spectroscopy of Mantle Minerals......Page 1004
Mineral Lattice Dynamics Calculations......Page 1005
Molecular Vibrations......Page 1006
Vibrational Dispersion Relations......Page 1008
Quantized Vibrations in Molecules and Crystals (Phonons)......Page 1010
Vibrational Frequency Shifts at High P and T; Quasi-Harmonic Model and Phonon Anharmonicity......Page 1011
Mineral Thermodynamic Quantities from Vibrational Spectra......Page 1014
Theoretical Calculations of Mantle Mineral Lattice Vibrations......Page 1015
Diamond and (Mg, Fe)O Magnesiowuumulstite......Page 1017
(Mg,
Fe)SiO3 Perovskite, Post-Perovskite, and CaSiO3 Perovskite......Page 1020
Stishovite and Post-Stishovite SiO2 Polymorphs......Page 1026
(Mg,Fe)2SiO4 Olivine, beta- and gamma-(Mg,Fe)2SiO4, and (Mg,Fe)SiO3 Pyroxe
nes......Page 1029
MgSiO3 Ilmenite and Majoritic Garnets......Page 1031
OH in Mantle Minerals......Page 1033
References......Page 1034
2.08 Theory and Practice - Multianvil Cells and High-Pressure Experimental Methods......Page 1046
Glossary......Page 1047
Precompression......Page 1048
Massive support......Page 1049
Conceptual Advantages of the MAAs over the Opposed-Type Apparatus......Page 1050
Multianvil Apparatus......Page 1051
Cubic anvil apparatus......Page 1052
Octahedral anvil apparatus......Page 1053
Combination of multianvil systems......Page 1054
Anvil Materials......Page 1055
Pressure Media and Gasket Materials......Page 1057
Fixed Points for Pressure Calibration......Page 1058
Heating Assemblies and Temperature Measurement......Page 1059
Quench Experiment......Page 1061
Crystal Growth at High Pressure and High Temperature......Page 1062
Electrical Conductivity Measurement......Page 1063
Multianvil System Interfaced with SR......Page 1065
Experimental Procedures for In Situ X-Ray Diffraction Study......Page 1067
Pressure standard materials and the pressure scales......Page 1068
Comparison of the pressure scales......Page 1069
Application to Phase Equilibrium Studies......Page 1070
Viscosity Measurement by X-Ray Radiography......Page 1072
Pressure Generation Using Sintered Diamond Anvil......Page 1073
New Applications and Future Perspectives......Page 1074
References......Page 1076
Relevant Website......Page 1079
Diamond-Anvil Cell as a Window to the Earth’s Interior......Page 1080
Comprehensive High P-T Mineral Properties......Page 1081
Anvils and Axial Windows......Page 1083
Gasket and Side Window......Page 1085
Samples and Pressure Media......Page 1086
DAC Body......Page 1087
Compression Mechanism......Page 1088
Pressure Calibration......Page 1089
Resistive Heating......Page 1090
Laser Heating......Page 1091
Cryogenic......Page 1092
Temperature Measurement......Page 1093
Optical Probes......Page 1094
Optical Absorption......Page 1095
Raman Spectroscopy......Page 1096
Brillouin Spectroscopy and Impulsive Stimulated Light Scattering Spectroscopy......Page 1097
Fluorescence Spectroscopy......Page 1098
Axial XRD......Page 1099
Radial XRD......Page 1100
X-Ray Absorption Spectroscopy (XAS)......Page 1102
X-Ray Emission Spectroscopy (XES)......Page 1103
Inelastic X-Ray Scattering - Near-Edge Spectroscopy......Page 1105
Nuclear Resonant X-Ray Spectroscopy......Page 1106
Nonresonant Phonon Inelastic X-Ray Scattering......Page 1108
References......Page 1109
Introduction......Page 1117
Static Compression......Page 1118
Diamond Anvil Cell......Page 1119
Ultrasonic Methods......Page 1122
Ultrasonic Wave Transmission Techniques......Page 1123
Ultrasonic echo methods......Page 1124
High-Pressure Ultrasonics......Page 1126
Vibrational Resonance......Page 1128
Brillouin Scattering......Page 1129
Impulsive Stimulated Scattering......Page 1131
Nuclear Resonant Inelastic X-Ray Scattering (NRIXS)......Page 1132
Inelastic X-Ray Scattering from Phonons......Page 1133
Shock Waves......Page 1134
Other Techniques......Page 1135
References......Page 1136
2.11 Theory and Practice - Measuring High-Pressure Electronic and Magnetic Properties......Page 1140
Glossary......Page 1141
Conventional bonding classification......Page 1143
Bonding under high P-T conditions......Page 1144
Electronic Structure......Page 1145
Magnetic Properties......Page 1146
Dielectric Functions......Page 1147
KK analysis......Page 1148
Crystal field transitions......Page 1149
Overview of Experimental Techniques......Page 1150
Optical absorption and reflectivity......Page 1151
IR spectroscopy......Page 1153
Raman scattering......Page 1155
Brillouin and Rayleigh scattering......Page 1156
Nonlinear optical methods......Page 1157
Mössbauer Spectroscopy......Page 1158
Neutron diffraction......Page 1159
X-ray absorption spectroscopy......Page 1160
X-ray emission spectroscopy......Page 1161
X-ray inelastic near-edge spectroscopy......Page 1162
X-ray magnetic circular dichroism......Page 1163
Resonant inelastic X-ray spectroscopy......Page 1164
Nuclear resonance forward scattering......Page 1165
Phonon inelastic X-ray scattering......Page 1166
Electrical conductivity......Page 1167
Magnetic susceptibility......Page 1168
Nuclear magnetic resonance......Page 1169
de Haas-van Alphen......Page 1170
Magnesiowüstite......Page 1171
Silicate Perovskite and Post-Perovskite......Page 1173
Volatiles......Page 1174
Iron and Iron Alloys......Page 1175
References......Page 1176
Introduction......Page 1185
Importance of High-Pressure Rheology Measurements......Page 1186
Lateral variation of asthenosphere viscosity......Page 1187
Stress Measurement......Page 1188
New High-Pressure Deformation Devices......Page 1191
The Instruments of Flow......Page 1193
Dislocations, Slip Systems,
and Texture......Page 1194
Polycrystalline Materials......Page 1196
Activation Volume of Olivine......Page 1199
High-Pressure Phases......Page 1200
References......Page 1201
Introduction......Page 1205
First-Principles Techniques......Page 1207
Density Functional Theory......Page 1208
PPs and basis sets......Page 1209
Ultrasoft (Vanderbilt) PPs......Page 1210
QMC methods......Page 1211
Crystal structures and phase transitions......Page 1213
Elastic constants......Page 1214
Finite Temperature......Page 1215
Molecular dynamics......Page 1216
Thermodynamic Properties......Page 1217
The Helmholtz free energy: Low-temperature and the quasi-harmonic approximation......Page 1218
Calculation of phonon frequencies......Page 1219
The Helmholtz free energy: High-temperature and thermodynamic integration......Page 1221
Melting......Page 1223
Solutions......Page 1226
First-principles calculations of chemical potentials......Page 1227
Solid-liquid equilibrium......Page 1228
Shift of freezing point......Page 1229
Conclusions......Page 1230
References......Page 1231
Introduction......Page 1234
Thermodynamics......Page 1235
Kinetics......Page 1237
Line Defects - Structure and Dynamics......Page 1239
Planar Defects - Structure and Energy......Page 1241
Mechanisms of Deformation and Constitutive Equations......Page 1243
Grain-boundary diffusion......Page 1244
Dislocation creep......Page 1245
Grain-boundary sliding and migration......Page 1247
Low-temperature plasticity......Page 1248
Role of melt in rock deformation......Page 1250
Role of water in rock deformation......Page 1252
Upper-Mantle Viscosity......Page 1255
Western US Mantle Viscosity Profile......Page 1256
Concluding Remarks......Page 1257
References......Page 1258
Role of Melts in Earth Differentiation......Page 1263
Volcanic Ascent and Eruption......Page 1264
Structural Relaxation......Page 1265
Phenomenology of the Glass Transition......Page 1266
Methods of Investigation......Page 1267
Tracer Diffusivities: Self-Diffusivities and Chemical Diffusion......Page 1268
Intrinsic versus Extrinsic Diffusivities......Page 1269
Methods of Investigation......Page 1270
Temperature Dependence of Newtonian Viscosity......Page 1271
Compositional Dependence of Newtonian Viscosity......Page 1272
Non-Newtonian Rheology in Silicate Melts......Page 1274
Concluding Statements......Page 1275
References......Page 1278
Introduction......Page 1281
Elasticity and Hooke’s Law......Page 1287
Plane Waves and Christoffel’s Equation......Page 1292
Measurement of Elastic Constants......Page 1297
Effective Elastic Constants for Crystalline Aggregates......Page 1300
Seismic Properties of Polycrystalline Aggregates at High Pressure and Temperature......Page 1302
Upper mantle......Page 1305
Transition zone......Page 1307
Lower mantle......Page 1309
Inner core......Page 1312
Olivine the Most Studied Mineral: State of the Art - Temperature, Pressure, Water, Melt,
ETC......Page 1316
Seismic Anisotropy and Melt......Page 1321
References......Page 1326
nomenclature......Page 1336
Phenomenological Description of Viscoelasticity......Page 1339
Stress-induced rearrangement of point defects......Page 1342
The vibrating-string model of dislocation damping......Page 1343
The role of kinks in dislocation mobility: migration of geometrical kinks......Page 1344
The role of kinks in dislocation mobility: formation and migration of kink pairs......Page 1345
Role of water in nominally anhydrous minerals......Page 1347
Effects of elastic and thermoelastic heterogeneity in polycrystals and composites......Page 1348
Elastically accommodated grain-boundary sliding......Page 1349
Diffusionally accommodated grain-boundary sliding......Page 1350
Stress-induced variation of the proportions of coexisting phases......Page 1351
Anelastic Relaxation Associated with Stress-Induced Fluid Flow......Page 1352
Laboratory measurements on single crystals and coarse-grained rocks......Page 1355
Grain-boundary migration in b.c.c. and f.c.c. Fe?......Page 1356
Grain-boundary sliding......Page 1357
Viscoelastic Relaxation in Cracked and Water-Saturated Crystalline Rocks......Page 1359
Vibrating string model......Page 1360
Kink model......Page 1361
The Role of Water in Seismic Wave Dispersion and Attenuation......Page 1362
Migration of Transformational Twin Boundaries as a Relaxation Mechanism in the Lower Mantle?......Page 1363
Summary and Outlook......Page 1364
References......Page 1365
Melting of (Mg,
Fe)SiO3-Perovskite......Page 1369
Melting of MgO......Page 1370
Partial Melting in the Lower Mantle......Page 1372
f.c.c.-h.c.p. Transition......Page 1373
Iron Melting below 100GPa......Page 1374
Diamond-Cell Measurements of Iron and Transition Metals......Page 1375
Local Structures of Icosahedral Short-Range Order in Transition Metal Melts......Page 1377
Shock Melting......Page 1378
Theoretical Calculations of the Iron Melting Curve......Page 1379
Viscosity of Iron at Earth Core Conditions......Page 1380
References......Page 1381
2.19 Properties of Rocks and Minerals - Thermal Conductivity of the Earth......Page 1384
nomenclature......Page 1385
Types of Thermal Transport and Justification for Omitting Metals......Page 1386
Scope of the Present Chapter......Page 1387
Acoustic models of lattice heat transport......Page 1388
The damped harmonic oscillator (DHO) - phonon gas model......Page 1390
Distinguishing direct from diffusive radiative transport on the basis of frequency-dependent attenuation......Page 1391
Spectroscopic models for diffusive radiative transport inside the Earth......Page 1393
An approximate formula that connects krad with concentration......Page 1395
Conventional Techniques Involving Multiple Physical Contacts......Page 1396
Methods Using a Single Physical Contact......Page 1397
Contact-Free, Laser-Flash Analys
is......Page 1398
Ambient conditions......Page 1400
Elevated temperature......Page 1405
Laser-Flash Data on Various Minerals......Page 1407
Effect of chemical composition and hydration on room temperature values......Page 1408
Comparison of the Room Temperature Lattice Contribution to Theoretical Models and Estimation of D and k for Some High-Pressure Phases......Page 1409
Ambient conditions and compositional dependence......Page 1410
Elevated temperature......Page 1411
Lattice Thermal Conductivity and Its Temperature Dependence......Page 1412
Calculation of the Effective Thermal Conductivity for Diffusive Radiative Transfer......Page 1413
References......Page 1414
2.20 Properties of Rocks and Minerals - Magnetic Properties of Rocks and Minerals......Page 1419
Introduction......Page 1420
Exchange Interactions and Magnetic Structure in Fe-Bearing Oxides......Page 1421
Theory......Page 1424
Application to magnetic nanoparticles......Page 1426
Application to coupled magnetic and chemical ordering in solid solutions......Page 1427
Amplitude and phase of a TEM image......Page 1431
Calculation of the mean inner potential......Page 1433
Formation of an electron hologram......Page 1434
Processing of the electron hologram......Page 1435
Removing the mean inner potential contribution......Page 1436
Quantification of the magnetic induction......Page 1437
Electron holography of isolated magnetite crystals......Page 1438
Electron holography of chains of closely spaced magnetite crystals......Page 1441
Electron holography of two-dimensional magnetite nanoparticle arrays......Page 1443
Exchange interactions across antiphase boundaries in ilmenite-hematite......Page 1446
Magnetism at the Micrometer Length Scale......Page 1448
The micromagnetic energy......Page 1449
Discretization of the micromagnetic energy......Page 1450
Finite element discretization......Page 1451
Equilibrium domain states in isolated magnetite particles......Page 1452
Temperature dependence of domain states in isolated particles......Page 1454
Field dependence of domain states......Page 1456
Magnetostatic interactions between particles......Page 1457
Magnetism at the Macroscopic Length Scale......Page 1458
First-order reversal curves and the FORC distribution......Page 1459
Extended FORCs and the reversible ridge......Page 1460
SP particles......Page 1461
SD particles......Page 1462
Mean-Field Interactions and FORC Diagrams......Page 1463
Practical Applications of FORC Diagrams......Page 1464
Summary......Page 1465
References......Page 1466
nomenclature......Page 1471
Point Defects and Conductivity......Page 1472
Effects of Temperature and Pressure......Page 1473
Point Defects in Olivine......Page 1474
Electrical Conductivity and Anisotropy of Olivine......Page 1475
Anhydrous Materials......Page 1477
Effects of Hydrogen......Page 1478
Mixing Relationships......Page 1479
Application to MT Studies......Page 1480
References......Page 1481
Coordinate Systems......Page 1483
Ground-Based Positioning Systems......Page 1486
Gravimeters......Page 1490
Error Sources, Signals, and Noise......Page 1491
References......Page 1492
Glossary......Page 1493
Historical Notes......Page 1494
Preliminary Definitions and Concepts......Page 1496
Newton’s Law of Gravitation......Page 1497
Green’s Identities......Page 1500
Uniqueness Theorems......Page 1502
Solutions by Integral Equation......Page 1503
Spherical Harmonics and Green’s Functions......Page 1504
Inverse Stokes and Hotine Integrals......Page 1507
Vening-Meinesz Integral and Its Inverse......Page 1508
Concluding Remarks......Page 1509
Low-Degree Harmonics as Density Moments......Page 1510
Normal Ellipsoidal Field......Page 1512
Methods of Determination......Page 1514
Measurement Systems and Techniques......Page 1515
Models......Page 1519
The Geoid and Heights......Page 1520
References......Page 1523
Definition of Absolute and Relative Gravity and Their Practical Uses......Page 1525
Precision......Page 1527
Repeatability......Page 1530
Accuracy......Page 1531
Gravity Meters......Page 1532
Absolute Gravity Meters......Page 1533
Pendulum absolute gravimeters......Page 1534
The free-fall chamber......Page 1535
The distance and time measurement: Trajectory determination......Page 1537
Commercial absolute gravity meters......Page 1540
The L&R zero-length spring suspension......Page 1541
The superconducting gravity meter......Page 1544
Gravimeter Applications......Page 1545
References......Page 1546
3.04 Gravimetric Methods - Superconducting Gravity Meters......Page 1547
Early years at UCSD......Page 1548
Early commercial model TT instruments (1981-94)......Page 1549
The Compact SG (1994-2002)......Page 1550
Superconducting components......Page 1551
Tilt compensation system......Page 1553
Development of the Dual-Sphere Design......Page 1554
Instrumental noise and precision......Page 1555
Ultralong hold time dewar......Page 1556
Data acquisition system and remote control......Page 1557
Operation and maintenance......Page 1558
Site stability......Page 1559
Second data sampled from an SG......Page 1560
Minute data from the GGP database (ICET)......Page 1561
Treatment of gaps in gravity data......Page 1563
Automatic procedures......Page 1564
Processing for different purposes......Page 1565
Tide-generating potential......Page 1567
Elastic response of the Earth......Page 1568
Ocean tides and loading......Page 1569
Atmospheric Pressure Effects......Page 1570
Frequency-dependent admittance......Page 1571
Green’s functions and nonlocal pressure corrections......Page 1572
3-D atmospheric corrections......Page 1573
Basics......Page 1574
Calibration using AGs......Page 1575
Calibration using a moving platform......Page 1576
The step response method......Page 1577
Hydrology......Page 1578
The Global Geodynamics Project......Page 1579
Seismic and Subseismic Signals......Page 1582
Atmospheric Loading......Page 1585
Resonance effects in diurnal tides......Page 1586
Nonlinear tides......Page 1587
Nontidal Ocean Circulation......Page 1588
Hydrology......Page 1589
Earth Rotation......Page 1590
Tectonic Effects......Page 1591
Ground/Satellite Gravity Field Comparison......Page 1592
Future Possibilities......Page 1594
Conclusions......Page 1595
Acknowledgments......Page 1596
References......Page 1597
Relevant Websites......Page 1604
nomenclature......Page 1605
Glossary......Page 1606
Measuring Range......Page 1610
Ionosphere Path Delay......Page 1611
Wet Troposphere Path Delay......Page 1612
Sea State Bias......Page 1614
Orbit and Ground Track......Page 1617
Aliasing......Page 1620
Precise Orbit Determination......Page 1622
Calibration at Single Site,
Instrumented Platforms......Page 1624
Cal/Val from Comparison to Tide Gauges......Page 1626
The TOPEX/Poseidon - Jason-1 Calibration Phase......Page 1628
Mean Sea Surface, Gravity,
and Bathymetry......Page 1629
Tides......Page 1632
Sea Level Change......Page 1634
Laser Altimetry......Page 1637
Wide Swath Altimeter......Page 1638
References......Page 1639
Relevant Website......Page 1643
Introduction......Page 1644
An Overview......Page 1645
The Tidal Forces......Page 1646
The Tidal Potential......Page 1647
Computing the Tides: Direct Computation......Page 1648
Computing the Tides (I): Harmonic Decompositions......Page 1649
The Pole Tide......Page 1653
Radiational Tides......Page 1654
Some combinations of Love numbers (I): gravity and tilt......Page 1655
Combinations of Love numbers (II): displacement and strain tides......Page 1656
Response of a Rotating Earth......Page 1657
NDFW resonance......Page 1658
Coupling to other modes......Page 1660
Anelastic effects......Page 1661
Computing Loads I: Spherical Harmonic Sums......Page 1662
Computing Loads II: Integration Using Green Functions......Page 1664
Tidal Analysis and Prediction......Page 1666
Predicting tides......Page 1669
Earth-Tide Instrumentation......Page 1670
Local Distortion of the Tides......Page 1671
References......Page 1672
Jdot2: A Review of Early GIA Research......Page 1677
New Approaches to Long-Wavelength Gravity Trends......Page 1680
A Problem with the Jdot2 Constraint?......Page 1681
Geoid Height Change: The Influence of Rotational Feedback......Page 1682
The Influence of Lateral Variations in Mantle Viscosity......Page 1686
Summary......Page 1688
References......Page 1689
Introduction......Page 1692
Nonuniqueness......Page 1693
Time-Variable Gravity......Page 1694
Changes in the Earth’s Oblateness......Page 1695
Gravity Solutions......Page 1697
Using the Harmonic Solutions to Solve for Mass......Page 1698
Love Numbers......Page 1699
Spatial Averaging......Page 1700
Smoothing......Page 1701
Estimating Errors and Accounting for Leakage......Page 1703
Comparing with land surface models......Page 1706
Anthropogenic effects and sea-level contributions......Page 1707
Cryosphere......Page 1708
Solid Earth......Page 1710
Oceanography......Page 1711
References......Page 1713
nomenclature......Page 1717
Instantaneous Rotation Vector......Page 1721
Celestial Intermediate Pole......Page 1726
Earth Rotation Measurement Techniques......Page 1730
Optical Astrometric......Page 1731
Global navigation satellite system......Page 1732
Satellite and lunar laser ranging......Page 1733
Doppler orbitography and radio positioning integrated by satellite......Page 1734
Intertechnique Combinations......Page 1735
UT1 and LOD Variations......Page 1736
Secular trend, tidal dissipation,
and glacial isostatic adjustment......Page 1737
Decadal variations and core-mantle interactions......Page 1739
Tidal variations and solid Earth, oceanic,
and atmospheric tides......Page 1742
Seasonal variations......Page 1745
Interannual variations and the ENSO......Page 1746
Intraseasonal variations and the Madden-Julian oscillation......Page 1748
True polar wander and GIA......Page 1749
Decadal variations, the Markowitz wobble,
and core-mantle interactions......Page 1753
Tidal wobbles and oceanic and atmospheric tides......Page 1754
Chandler wobble and its excitation......Page 1756
Seasonal wobbles......Page 1758
Nonseasonal wobbles......Page 1760
References......Page 1761
3.10 Earth Rotation Variations......Page 1773
nomenclature......Page 1774
Manifestations of Variations in Earth Rotation and Orientation......Page 1779
Forced Motions......Page 1780
Gravitational Perturbations and Displacement Fields......Page 1782
Role of Deformations in Earth Rotation......Page 1783
Precision of Observations: Challenge to Theory......Page 1784
Precession......Page 1785
The CIP and CIO......Page 1786
Equation of Motion in a Celestial Frame......Page 1787
Euler’s equations for a rigid body......Page 1788
Potential, Acceleration,
Torque......Page 1789
Torque Components in Terrestrial Frame......Page 1790
Expansion of the Potential: Tidal Spectrum......Page 1791
Degree 2 Potential and Torque: Spectra......Page 1792
Equatorial Components of Torque......Page 1793
Terms of General Degree and Order in the Torque......Page 1794
The Torque in the Simple Model......Page 1795
Nutation and Precession in the Model......Page 1796
The Spectrum and the Fundamental Arguments of Nutation......Page 1797
Resolution of Elliptical Motions into Pairs of Circular Motions......Page 1798
Kinematical Relations between the Nutation of the Figure Axis and the Wobble......Page 1800
Kinematic Relations in the Frequency Domain......Page 1801
Transfer Function......Page 1802
Relations Connecting the Nutations of Different Axes: Oppolzer Terms......Page 1803
Rigid Earth Nutation......Page 1804
Hamiltonian Approach......Page 1805
Torque Approach......Page 1806
Rigorous Treatment of the General Case......Page 1807
Deformable wholly solid Earth......Page 1808
Equations of motion......Page 1809
Wobble normal modes......Page 1810
Coupling of the Core and the Mantle at the CMB......Page 1811
Inclusion of Solid Inner Core......Page 1812
Confronting Theory with Observations......Page 1813
Poisson equation......Page 1816
GSH expansions: Radial functions......Page 1817
Motion equation......Page 1818
Solutions of the radial equations......Page 1820
Atmospheric Tides and Nontidal Effects from Surficial Fluids......Page 1821
Nonrotating Origin......Page 1822
Transformation between ICRF and ITRF......Page 1823
Rotational Normal Mode Definitions......Page 1824
Generalized Spherical Harmonics......Page 1825
References......Page 1826
Introduction......Page 1828
The Limitations of Classical Surveying Methods......Page 1829
The Impact of Space Geodesy......Page 1830
LLR Development......Page 1831
SLR Development......Page 1832
VLBI Development......Page 1833
GPS Development......Page 1834
Comparing GPS with VLBI and SLR......Page 1836
The Future of GNSS......Page 1837
International GNSS Service......Page 1838
Basic Principles......Page 1840
GPS System Design and Consequences......Page 1842
Introducing High-Precision GPS......Page 1844
GPS Observable Modeling......Page 1845
Data Processing Software......Page 1849
Introduction......Page 1851
Estimation of Station Velocity......Page 1852
Plate-Tectonic Rotations......Page 1854
Plate-Boundary Strain Accumulation......Page 1856
The Earthquake Cycle......Page 1859
Surface Mass Loading......Page 1861
References......Page 1863
Relevant Websites......Page 1867
Motivation......Page 1868
History and Overview......Page 1870
Scope......Page 1873
InSAR......Page 1874
The Interferogram......Page 1876
Interferometric Baseline and Height Reconstruction......Page 1878
Differential Interferometry......Page 1880
Correlation......Page 1882
ScanSAR or Wide Swath Interferometry......Page 1885
Permanent Scatterers and Time-Series Analysis......Page 1886
Speckle Tracking and Pixel Tracking......Page 1889
A Best-Practices Guide to Using InSAR and Related Observations......Page 1890
Interferometric Baseline Errors......Page 1891
Propagation Delays......Page 1892
Stacking Single-Component Images......Page 1895
InSAR Time Series......Page 1897
Vector Displacements......Page 1898
The Luxury of Sampling - Rationale and Approach......Page 1900
Decorrelation as Signal......Page 1901
The Link between Science and Mission Design......Page 1902
Radar Imaging......Page 1905
Matched filtering......Page 1906
Radar signal return from a 3-D surface......Page 1908
Azimuth signal and aperture synthesis......Page 1909
Range-Doppler images......Page 1912
Other Doppler considerations......Page 1913
The sampled azimuth spectrum and range migration......Page 1915
Speckle......Page 1916
Doppler and the Interferometric Baseline......Page 1919
References......Page 1920
4.01 Comprehensive Overview......Page 1924
Introduction......Page 1925
Earthquake Size......Page 1926
Transcurrent plate boundaries......Page 1930
Divergent plate boundaries......Page 1932
Convergent plate boundaries......Page 1937
Intraplate earthquakes......Page 1938
The Largest and Deadliest Earthquakes......Page 1940
Earthquake Size Distribution......Page 1942
Point-Source Parameters......Page 1944
Moment-Tensor Representation......Page 1947
Kinematic source models......Page 1948
Slip Behavior......Page 1950
Brittle Failure......Page 1951
Creep......Page 1952
Aseismic Transients and Tremor......Page 1955
Friction......Page 1956
Energy Budget......Page 1958
Hydrological processes......Page 1959
Melting......Page 1961
Fault-Zone Structure......Page 1962
Borehole Observations, Fault-Zone Drilling,
and Seismicity in Mines......Page 1963
State of Stress......Page 1964
Earthquake Nucleation and Short-Term Earthquake Prediction......Page 1966
Earthquake Forecasting......Page 1967
Static Stress Triggering......Page 1968
Dynamic Triggering......Page 1969
Temporal Distribution of Earthquakes......Page 1971
Strong Motion Prediction......Page 1972
Solid Earth-Atmospheric Coupling......Page 1973
Earthquake Risk Mitigation......Page 1974
References......Page 1976
Relevant Websites......Page 1981
Introduction......Page 1982
Seismic Radiation from a Point Source......Page 1983
The Near Field of a Point Force......Page 1984
Energy Flow from Point Force Sources......Page 1985
The Green Tensor for a Point Force......Page 1986
Moment Tensor Sources......Page 1987
Radiation from a Point Moment Tensor Source......Page 1988
A More General View of Moment Tensors......Page 1989
Moment Tensor Equivalent of a Fault......Page 1990
Eigenvalues and Eigenvectors of the Moment Tensor......Page 1991
Seismic Radiation from Moment-Tensor Sources in the Spectral Domain......Page 1992
More Realistic Radiation Model......Page 1993
The Kinematic Dislocation Model......Page 1994
Haskell’s model......Page 1995
The Circular Fault Model......Page 1996
The Kinematic Circular Source Model of Sato and Hirasawa......Page 1997
Generalization of Kinematic Models and the Isochrone Method......Page 1998
Crack Models of Seismic Sources......Page 1999
Rupture Front Mechanics......Page 2000
Stress and Velocity Intensity......Page 2001
The static circular crack......Page 2002
Conclusions......Page 2003
References......Page 2004
nomenclature......Page 2006
Introduction......Page 2007
Singular Crack Models......Page 2008
Planar Breakdown Zone Models......Page 2009
The Governing Equations......Page 2011
Exact Solutions for Quasistatic Two-Dimensional Planar Cracks......Page 2012
Dynamic Effects......Page 2016
Fracture Energy......Page 2018
Coupling between Elastodynamics and Shear Heating......Page 2021
References......Page 2025
Rate- and State-Dependent Friction......Page 2030
Stability of Slip......Page 2032
Depth Dependence of Constitutive Parameters......Page 2034
Creep Events and Silent Earthquakes......Page 2035
Earthquake Afterslip......Page 2037
Numerical Simulations of Spontaneous Earthquake Nucleation......Page 2038
Earthquake Rate Formulation......Page 2039
Aftershock-rate equations......Page 2041
Foreshocks......Page 2043
Earthquake Triggering......Page 2044
Stress Changes Estimated from Earthquake Rates......Page 2047
Conclusions and Future Directions......Page 2048
References......Page 2049
nomenclature......Page 2053
Normal Stress Reduction or Loss of Contact from Normal Interface Vibrations......Page 2054
Dynamic Normal Stress Reduction from Elastic or Permeability Mismatch......Page 2055
Acoustic Fluidization......Page 2056
Elastohydrodynamic Lubrication......Page 2057
Thermal Pressurization of Pore Fluid......Page 2058
'Flash’ Heating/Melting at Asperity Contacts......Page 2059
Interfacial Lubrication by Friction Melt......Page 2062
Interfacial Lubrication by Thixotropic Silica Gel......Page 2065
Implications of Low Dynamic Friction for Earthquake Stress Drops and for Orientations and Magnitudes of Tectonic Stress......Page 2067
Conclusions......Page 2068
References......Page 2069
Introduction......Page 2075
Early Experimental Studies......Page 2076
Simulating tectonic loading......Page 2078
Simulating the nucleation process......Page 2079
Choosing appropriate model materials and diagnostics......Page 2080
Supershear and Sub-Rayleigh to Supershear Transition in Homogeneous Fault Systems......Page 2082
Purely Sub-Rayleigh and Purely Supershear Earthquake Ruptures......Page 2083
The Experimental Visualization of the Sub-Rayleigh to Supershear Earthquake Rupture Transition......Page 2085
A Theoretical Model for the Sub-Rayleigh to Supershear Transition......Page 2086
Directionality of Ruptures along Faults Separating Weakly Dissimilar Materials: Supershear and Generalized Rayleigh Wave Speed Ruptures......Page 2089
Two Types of Ruptures along Inhomogeneous Fault Systems......Page 2090
Experimental Setup......Page 2092
Experimental Results......Page 2093
Comparison of the Experimental Results to Early Numerical and Theoretical Studies......Page 2095
The Parkfield Earthquake Discussion in the Context of Experiments and of Recent Numerical Studies......Page 2096
Discussion of the Historic, North Anatolian Fault Earthquake Sequenc
e in View of the Experimental Results......Page 2097
Observing Crack-Like, Pulse-Like,
Wrinkle-Like and Mixed Rupture Modes in the Laboratory......Page 2099
Experimental Investigation of Dynamic Rupture Modes......Page 2101
Specimen configuration and loading......Page 2102
Visualizing Pulse-Like and Crack-Like Ruptures in the Laboratory......Page 2103
Wrinkle-Like Opening Pulses along Interfaces in Homogeneous Systems......Page 2107
Discussion......Page 2109
References......Page 2111
nomenclature......Page 2115
Introduction......Page 2116
Data Preparation......Page 2118
Parametrization of slip distribution......Page 2120
Example of linear expression: multi-time-window method......Page 2122
Example of nonlinear expression......Page 2123
Calculation of Synthetic Data......Page 2124
Best Estimate......Page 2126
Constraints and Regularization......Page 2127
Comparison in the Frequency Domain......Page 2129
Example of Slip Model: The 1999 Chi-Chi Earthquake......Page 2131
Characteristics of Slip Models......Page 2133
Implication of Slip Models for Fault Dynamics......Page 2135
Dynamic Modeling and Slip Models......Page 2136
Scaling of Earthquake Heterogeneity......Page 2137
Discussion and Conclusion......Page 2138
References......Page 2139
Relevant Websites......Page 2145
Introduction......Page 2146
Stress Interactions between Faults in a Homogeneous Elastic Half-Space......Page 2147
Coulomb Failure......Page 2148
2-D Case: Coulomb Stress on a Plane of Specified Orientation......Page 2149
2-D Case: Change of Coulomb Stress on Optimally Orientated Faults......Page 2150
3-D Case: Strike-Slip and Dip-Slip Conditions......Page 2151
Sensitivity to the Main-Shock Focal Mechanism......Page 2152
Coulomb Stress Changes and Aftershocks......Page 2154
Coulomb Stress Changes Preceding the Landers Rupture......Page 2155
Stress Changes Following the Landers Rupture but before the Big Bear Earthquake......Page 2156
Stress Changes Caused by the Landers, Big Bear,
and Joshua Tree Ruptures......Page 2157
Interactions between Large Earthquakes: Western Turkey and the Aegean......Page 2158
Is It Better to Calculate Stress Transfer to Known Faults?......Page 2160
Introducing Time into the Failure Criterion......Page 2162
Rate- and State-Dependent Friction Equations......Page 2163
Elastic Half-Space Loading Models......Page 2164
Inhomogeneous Lithospheric Models - The Effects of Voids or Fissures......Page 2166
Interactions between Volcanic Eruptions and Earthquakes......Page 2167
Fluid Movement in Nonvolcanic Regions......Page 2168
The Distribution of Small Events before Large Earthquakes......Page 2169
Dynamic Triggering......Page 2172
Conclusions......Page 2173
References......Page 2174
Relevant Website......Page 2176
4.09 Dynamic Triggering......Page 2177
nomenclature......Page 2178
Seismic waves and dynamic stress triggering......Page 2179
Evidence for Dynamic Triggering......Page 2180
Widespread Evidence for Remote Dynamic Triggering in Western North America......Page 2181
The MW=7.3 Landers earthquake of 28 June 1992......Page 2182
The MW=7.1 Hector Mine earthquake of 16 October 1999......Page 2183
The MW=7.9 Denali Fault earthquake of 3 November 2002......Page 2184
Instrumental evidence from around the globe......Page 2185
Triggering by solid Earth tides......Page 2188
Crustal triggering......Page 2189
Triggered Onsets and Delay Times......Page 2191
Repeat Triggering and Recharge Times......Page 2192
Dynamically Triggered Deformation......Page 2195
Coulomb failure under dynamic stresses......Page 2196
Subcritical crack growth......Page 2199
Hydrous fluid transport: changes in permeability and pore pressure......Page 2200
Magmatic fluids......Page 2201
Challenges in Detecting Triggered Seismicity......Page 2202
Challenges in Determining the Triggering Processes......Page 2203
Conclusions......Page 2204
References......Page 2208
Hydrologic Response to Stress......Page 2212
Poroelastic flow and deformation......Page 2213
Permanent deformation......Page 2214
Poroelastic deformation and fluid flow......Page 2215
Liquefaction......Page 2216
Water-level oscillations......Page 2218
Persistent and delayed postseismic changes in water level in the near and intermediate field......Page 2219
Near-field response of unconsolidated materials......Page 2220
Streamflow......Page 2224
Mud Volcanoes......Page 2229
Geysers......Page 2230
Feedback between Earthquakes and Hydrology......Page 2231
Hydrologic Precursors......Page 2232
References......Page 2234
Introduction......Page 2240
Deep Earthquake Source Properties......Page 2241
Gutenberg-Richter statistics......Page 2242
Isolated giant earthquakes......Page 2243
Aftershock Occurrence......Page 2244
Long-range triggering......Page 2245
Duration of rupture......Page 2246
Spatial pattern of rupture, rupture velocity,
and stress drop......Page 2248
The M 8.2 1994 Bolivian earthquake......Page 2251
Dehydration Embrittlement......Page 2252
Anticrack Faulting in a Metastable Phase......Page 2253
Thermal Shear Instability......Page 2255
Thermal parameter......Page 2256
Stresses and Fault Plane Solutions......Page 2257
Focal mechanisms and reactivated faults......Page 2258
Double Seismic Zones......Page 2259
Outboard Earthquakes and Recumbent Slabs......Page 2261
Viability of the Three Main Physical Mechanisms......Page 2263
Notable Points and Speculations......Page 2264
References......Page 2266
Relevant Website......Page 2269
4.12 Volcanology 101 for Seismologists......Page 2270
Glossary......Page 2271
Introduction to Volcanic Systems......Page 2272
Melt......Page 2273
Degassing......Page 2274
Gas budgets......Page 2275
Viscosity, Density,
and Volatile Content......Page 2277
Drivers of One-Way Magma Ascent......Page 2279
Drivers of Convective Magma Ascent with Return Flow......Page 2280
Magma Mixing - Conditions, Evidence,
Effects......Page 2281
Geospeedometers of Magma Ascent, Convection,
and Mixing......Page 2282
Self-sealing in hydrothermal systems......Page 2283
Volcanic Unrest......Page 2284
Seismicity......Page 2285
Ground Deformation......Page 2287
Other Changes - Gravity, Magnetic, Electrical, Thermal,
Hydrologic......Page 2288
Regional earthquakes......Page 2289
Explosive versus Effusive Eruptions: Fragmentation of Magma......Page 2290
Measures of Magnitude, Intensity (Volume DRE, Mass Discharge Rate,
VEI)......Page 2292
Lava flows and lava domes......Page 2293
Eruption Forecasts......Page 2294
Successes and false alarms......Page 2295
Concentrated Sediment-Water Flows (Lahars)......Page 2296
Risk Mitigation......Page 2297
Future Directions......Page 2298
References......Page 2300
Introduction......Page 2308
Signals Observed by Short-Period Seismometers......Page 2309
Broadband Signals......Page 2310
Description of Volcanic Seismic Sources......Page 2312
Equivalent Forces of General Seismic Sources......Page 2313
The Seismic Moment Tensor......Page 2314
The Single Force......Page 2315
Waveform Analysis of Volcanic Seismic Sources......Page 2316
Slow Waves in Solid/Fluid Composite......Page 2317
Resonating Sources: A Crack......Page 2319
Other Resonating Sources......Page 2320
Flow-Induced Oscillation......Page 2321
Broadband Seismometry......Page 2323
Array Analysis......Page 2324
Models for Volcanic Seismic Signals......Page 2325
Aso......Page 2326
Kilauea......Page 2327
Miyake......Page 2328
Stromboli......Page 2330
Explosion Quakes......Page 2331
Concluding Remarks......Page 2333
References......Page 2334
Relevant Website......Page 2339
4.14 Interaction of Solid Earth, Atmosphere, and Ionosphere......Page 2340
Glossary......Page 2341
Cause......Page 2343
Turbulence......Page 2344
Discovery......Page 2345
Excitation mechanism......Page 2346
Microseisms......Page 2347
Source location......Page 2348
The correlation technique in diffuse wavefield......Page 2349
Historical Context......Page 2350
Wave propagation in the atmosphere......Page 2351
Frequency-wavelength domains of interest......Page 2352
Surface observation: seismometer, microbarograph,
hydrophones......Page 2353
High-altitude observation: ionosondes, Doppler sounding, transmission (GPS),
in situ......Page 2354
Seismic waves......Page 2355
Tsunami waves......Page 2356
Direct atmospheric waves......Page 2357
The Case of the Great Sumatra-Andaman Earthquake......Page 2358
Conclusion......Page 2359
References......Page 2360
Seismic and Aseismic Slip at Plate Boundaries......Page 2364
Afterslip......Page 2367
Interseismic Slip Events......Page 2368
EAS and Seismic Tremor......Page 2371
Cascadia......Page 2376
Southwest Japan......Page 2377
Mexico......Page 2379
Alaska......Page 2380
San Andreas Fault......Page 2381
EAS and Seismicity......Page 2383
Mechanics of EAS......Page 2385
Recurrence of EAS......Page 2386
Acknowledgments......Page 2387
References......Page 2388
Introduction......Page 2392
Aspects of Global Seismicity......Page 2393
Recent Discoveries and Future Directions......Page 2397
References......Page 2400
4.17 Tsunamis......Page 2401
The 2004 Indian Ocean Tsunami......Page 2402
1960 Chilean tsunami......Page 2404
1896 Sanriku tsunami......Page 2405
1700 Cascadia tsunami......Page 2406
Deep ocean measurements......Page 2407
Post-tsunami surveys......Page 2408
Study of Historical Documents......Page 2409
Tsunami magnitude Mt......Page 2410
Fault parameters and ocean-bottom deformation......Page 2411
Tsunamigenic and tsunami earthquakes......Page 2412
Tsunamis from Landslides......Page 2413
Modeling landslide tsunamis......Page 2414
Volcanic tsunamis due to landslides......Page 2415
Ray-Theoretical Approach......Page 2416
Basic Equations for Tsunami Propagation......Page 2417
Numerical Computations......Page 2418
Tsunami Warning and Hazard Reduction Systems......Page 2419
Far-Field Tsunami Warning Systems......Page 2420
Local Tsunami Warning Systems......Page 2421
Long-Term and Probabilistic Forecast......Page 2422
Tsunami Hazard Maps and Public Awareness......Page 2423
References......Page 2424
Relevant Websites......Page 2429
4.18 Physical Processes That Control Strong Ground Motion......Page 2430
What Is Strong Ground Motion?......Page 2431
Amplitude of Strong Motion......Page 2432
Representation Theorem......Page 2434
Empirical Green’s Functions......Page 2435
Synthetic Green’s Functions......Page 2436
Inversions for Slip Models......Page 2438
Fourier Amplitude Spectrum of the Seismic Source......Page 2439
Scaling of Source Parameters......Page 2440
Amplification due to the Decrease in Shear Velocity......Page 2442
Refraction of Body Waves Toward Vertical Incidence......Page 2444
Reflection and Transmission across Interfaces......Page 2445
Resonance in Flat-Layered Low-Velocity Layers at the Surface......Page 2446
Effect of Basin Edges on Incoming Body Waves......Page 2447
Long Linear Valleys Acting as Waveguides......Page 2448
Scattering......Page 2449
Correlation and Coherency......Page 2451
Effect of Topography......Page 2452
Q......Page 2454
Nonlinearity......Page 2456
Pulse Duration and Directivity......Page 2459
Predicting Ground Motion Synthetic Seismograms......Page 2461
Stochastic simulations......Page 2462
Empirical Green’s functions......Page 2463
Synthetic Green’s functions with kinematic and dynamic sources......Page 2464
Ground Motion Prediction Equations......Page 2465
Future Directions for GMPEs......Page 2468
Conclusions......Page 2470
References......Page 2471
Relevant Websites......Page 2482
Paleoseismology and the Significance of Paleoearthquakes......Page 2483
Recognition of tectonic deformation......Page 2484
Application of geochronology......Page 2485
Chronologies of Paleoearthquakes......Page 2486
Surface ruptures......Page 2488
Regional coseismic deformation......Page 2489
Ground shaking and secondary effects......Page 2491
Slip rates......Page 2492
Slip per event......Page 2493
Models......Page 2494
Characteristic Earthquakes......Page 2495
Time Predictable and Recurrence Models......Page 2497
Rupture Patterns......Page 2498
Uncertainty in Paleoseismic Data......Page 2499
Applications and Future Directions......Page 2500
References......Page 2501
Frequency-Magnitude Relation and the Historical Observation Window......Page 2506
Effects of Tectonics on Sites of Human Occupation, Resonant Effects,
and Vulnerability of Tells......Page 2508
Communication Issues between Disciplines......Page 2509
Earthquake Traces in Archeological Sites......Page 2510
Elevated or submerged coastal land surfaces......Page 2511
Collapsed walls with preferential axes of destruction......Page 2512
Aligned fallen columns......Page 2513
Slipped keystones......Page 2514
Skeletons of Trapped Humans and Domestic Animals......Page 2515
Fire......Page 2516
Informing Archeological Methods with a Seismology Perspective......Page 2517
Forensic Anthropology......Page 2518
Benefits to Seismology......Page 2519
References......Page 2520
Introduction......Page 2522
Forecasting Earthquakes at Different Spatial and Temporal Scales......Page 2523
Global Seismic Hazard......Page 2524
Earthquake fatalities since 1900......Page 2526
Concentrations of risk......Page 2528
The San Francisco Bay Area......Page 2529
Future losses......Page 2531
The
'Holy Grail’ of Seismology: Earthquake Prediction......Page 2533
Long-Term Mitigation: Earthquake-Resistant Buildings......Page 2534
Strong-motion observations......Page 2535
Strong-motion simulations......Page 2536
New seismic resistant designs......Page 2538
The rich and the poor......Page 2539
The new and the old......Page 2540
Short-Term Mitigation: Real-Time Earthquake Information......Page 2541
ShakeMap......Page 2542
Rapid finite source modeling......Page 2543
Applications of ShakeMap......Page 2545
S-waves versus P-waves......Page 2547
Warning around the world......Page 2550
ElarmS in California......Page 2551
Warning times......Page 2554
Future development......Page 2555
Benefits and costs......Page 2556
Conclusion......Page 2557
References......Page 2558
Introduction - Why Drill to Study Earthquakes?......Page 2563
Fault-Zone Permeability......Page 2565
Chemical Effects of Fluids on Fault-Zone Rheology......Page 2566
Frictional Strength of Faults......Page 2567
Weak Plate-Bounding Faults......Page 2568
Near-Field Observations of Earthquake Nucleation and Propagation......Page 2571
Fault-Zone Drilling Projects......Page 2572
San Andreas Fault Observatory at Depth......Page 2573
Nojiima Fault......Page 2575
Chelungpu Fault......Page 2576
Gulf of Corinth......Page 2577
NELSAM......Page 2581
NanTroSeize......Page 2582
Summary......Page 2583
References......Page 2584
nomenclature......Page 2589
Glossary......Page 2590
GR Frequency-Magnitude Scaling......Page 2591
Baringth’s Law......Page 2593
Omori’s Law......Page 2594
Accelerated Moment Release......Page 2597
Recurrence Times......Page 2599
Interoccurrence Times......Page 2600
Deterministic Chaos......Page 2601
Criticality and Self-Organized Criticality......Page 2602
Cellular Automata Models......Page 2603
Numerical Simulations......Page 2605
Damage Mechanics Models......Page 2606
Overview......Page 2608
Earthquake Forecasting (Prediction)......Page 2609
References......Page 2610
Relevant Website......Page 2614
Early History......Page 2615
Early Chinese Compasses......Page 2616
Epistola of Petrus Peregrinus......Page 2618
European Recognition of Declination......Page 2620
De Magnete of William Gilbert......Page 2621
Further Developments in Observations......Page 2622
Measurement of Intensity......Page 2623
Deciphering the Past Using Remanent Magnetization......Page 2625
Polarity Reversals......Page 2626
Long-Term Behaviors of the Geodynamo......Page 2628
Spherical Harmonic Analysis......Page 2629
Satellite Measurements......Page 2631
Geomagnetic Spectrum......Page 2632
Inverse Problem......Page 2634
Signal and Noise in Magnetic Field Measurements......Page 2636
Magnetic Mapping of Planets......Page 2638
Planetary Dynamos: A Comparative study......Page 2640
The Magnetic Field of the Sun......Page 2641
Discussion and Conclusions......Page 2643
References......Page 2644
Introduction......Page 2646
Magnetic Elements, Coordinates,
and Time......Page 2648
Dipole coordinates and components......Page 2649
Time......Page 2650
Ground Data......Page 2651
Satellite Data......Page 2652
Ørsted......Page 2653
Calibration and alignment of satellite magnetometers......Page 2654
Dst,
an index of magnetospheric ring-current strength......Page 2655
Global Models of the Earth’s Magnetic Field......Page 2656
Spherical Harmonic Representation of the Field......Page 2657
The International Geomagnetic Reference Field......Page 2658
More advanced models......Page 2659
Models of the Core Field......Page 2661
Models of the Crustal (Lithospheric) Field......Page 2663
Modelling philosophy......Page 2664
Early comprehensive models......Page 2666
Recent comprehensive models......Page 2667
Predictions from CM4......Page 2668
Spatial Power Spectra and Timescales......Page 2672
The Field at the Earth’s Surface......Page 2676
The Field at the Core Surface......Page 2681
References......Page 2685
Relevant Websites......Page 2688
Introduction......Page 2689
Magnetosphere......Page 2690
Currents......Page 2691
Single-Particle Motion......Page 2692
Collisions and Conductivity......Page 2694
Convection and Merging......Page 2695
Equatorial Electrojet......Page 2696
Storms and Sudden Commencements......Page 2697
Magnetospheric Convection......Page 2698
Auroral Electrojets......Page 2699
Substorms......Page 2700
Geomagnetic Pulsations......Page 2701
Pi2 Pulsations......Page 2702
References......Page 2703
5.04 Observation and Measurement Techniques......Page 2705
nomenclature......Page 2706
Instrumentation......Page 2707
The induction coil......Page 2708
The fluxgate......Page 2709
The SQUID......Page 2710
Proton precession magnetometers......Page 2711
Optically pumped magnetometers......Page 2713
Special Magnetic Conditions in an Observatory......Page 2715
Absolute measurement of the horizontal component, H, by the Gauss method......Page 2716
Absolute measurements with the proton vector magnetometer (PVM)......Page 2717
Declinometer......Page 2718
DIflux (DIM)......Page 2719
Classical magnet-based instruments......Page 2720
Calibration of scalar magnetometers......Page 2721
Obtaining definitive absolute data......Page 2722
The INTERMAGNET Magnetic Observatory Network......Page 2723
Fully Automatic Magnetic Observatories......Page 2724
Magnetic Surveys for Geological Exploration......Page 2725
Mapping Magnetic Anomalies......Page 2726
The Origin of Magnetic Anomalies......Page 2727
Ground surveys......Page 2730
Practical airborne magnetometry......Page 2731
Elimination of nongeological influences (aircraft,
temporal changes)......Page 2732
Data Presentation,
Enhancement and Interpretation Methods......Page 2734
The Link between Magnetic Properties of Rocks and Regional Geology......Page 2736
Satellites and Space Probes......Page 2738
Introduction......Page 2739
Consolidated rocks......Page 2740
Unconsolidated (lake and deep sea) sediments......Page 2741
Astatic systems......Page 2742
Spinner magnetometers......Page 2743
Cryogenic magnetometers......Page 2744
Introduction......Page 2746
Thermal demagnetization......Page 2747
Intensity of magnetization against demagnetization level......Page 2748
Remagnetization circles......Page 2749
Paleomagnetic directions: the Fisher distribution......Page 2750
Field tests......Page 2751
Baked contact test......Page 2752
The GAD hypothesis......Page 2754
References......Page 2755
Relevant Websites......Page 2758
5.05 Geomagnetic Secular Variation and Its Applications to the Core......Page 2759
Historical Background......Page 2760
Catalogs and Compilations of Data......Page 2761
Surveys, Repeat Stations,
and Marine Data......Page 2762
Observatory Data......Page 2764
Satellite Data......Page 2767
Time-Dependent Models of the Main Field......Page 2768
Methodologies......Page 2769
Time-dependent models based on cubic B-splines......Page 2771
The ufm1, ufm2,
and gufm1 models......Page 2772
CHAOS field model of recent satellite data......Page 2773
Field Evolution at the Earth’s Surface......Page 2774
Axial dipole decay......Page 2776
Evolution of integrated rate of change of vertical field at Earth’s surface......Page 2778
Geomagnetic jerks......Page 2779
Field Evolution at the Core Surface......Page 2782
High latitude,
approximately stationary flux lobes......Page 2784
Low-latitude,
westward-drifting field features......Page 2785
Interpretation in Terms of Core Processes......Page 2788
Maxwell’s Equations and Moving Frames......Page 2789
The Induction Equation in a Spherical Earth......Page 2791
The Navier-Stokes Equation......Page 2793
Application of the frozen flux hypothesis to the generation of secular variation at the core surface......Page 2795
Attempts to test the frozen flux approximation using geomagnetic observations......Page 2796
Theoretical issues concerning the frozen flux hypothesis......Page 2798
Other Invariants......Page 2800
References......Page 2801
5.06 Crustal Magnetism......Page 2806
Glossary......Page 2807
Governing Equations......Page 2808
Structure of the Remainder of the Chapter......Page 2809
Magnetic Petrology......Page 2810
Continental and Oceanic Magnetic Anomalies......Page 2811
Chicxulub......Page 2812
Dike Swarms......Page 2813
Heat Flux beneath the Antarctic Ice Sheet......Page 2815
Compilations and Models......Page 2816
Continental-Scale Compilations......Page 2818
Satellite Compilations of Crustal Magnetic Fields......Page 2819
Global Magnetization Models......Page 2821
Removal of Noncrustal Fields......Page 2822
Representations......Page 2823
Transformations......Page 2828
Pseudogravity......Page 2829
Spatial derivatives......Page 2830
Euler deconvolution......Page 2831
Resolving Interpretational Ambiguity......Page 2832
Spectral Overlap with Other Fields......Page 2833
Separation of Induced and Remanent Magnetization......Page 2836
References......Page 2837
5.07 Geomagnetism......Page 2847
Historical Beginnings......Page 2848
Earth/ionosphere cavity......Page 2849
Daily variation and Sq......Page 2850
The magnetospheric ring current......Page 2851
Introductory Theory......Page 2852
The MT Method......Page 2853
MT in Practice......Page 2854
Magnetic field measurements......Page 2855
MT Data Processing......Page 2857
Global Response Functions......Page 2858
Using magnetic satellites......Page 2859
Interpretation of GDS and MT Data......Page 2860
Forward Modeling in Higher Dimensions......Page 2861
Numerical Inversion of Geomagnetic Data......Page 2862
Electrical Conductivity of Earth Materials......Page 2864
Conduction in native metals......Page 2865
Ionic, or point defect,
conduction......Page 2866
Binary Mixing Laws......Page 2868
Textural anisotropy......Page 2869
Laboratory Measurement of Conductivity......Page 2870
Thermopower Measurements......Page 2872
Conductivity of Mantle Minerals......Page 2873
Olivine conductivity......Page 2874
The Oceans and Crust......Page 2877
The Mantle......Page 2879
Water......Page 2881
The Core......Page 2882
Water in the Mantle......Page 2883
References......Page 2884
5.08 Magnetizations in Rocks and Minerals......Page 2887
Ferromagnetism......Page 2888
Antiferromagnetism and Ferrimagnetism......Page 2890
Magnetocrystalline Anisotropy......Page 2891
Magnetic Quantities, Units, and Conversions......Page 2892
Demagnetizing Energy and Domain Structure......Page 2893
Domain Wall Width and Energy......Page 2895
Equilibrium Domain Structures......Page 2896
Observations of Domains......Page 2897
Single-Domain Grains......Page 2899
Metastable SD Grains......Page 2900
Pseudo-Single-Domain Grains......Page 2902
Thermomagnetic Curves, Curie Temperatures, and SD Ranges......Page 2904
Magnetite......Page 2907
Titanomagnetites......Page 2908
Maghemite and Titanomaghemites......Page 2909
High-Temperature Oxidation......Page 2911
Titanohematites (Hemoilmenites)......Page 2912
Iron Oxyhydroxides......Page 2913
Iron Sulfides......Page 2914
Iron Carbonates......Page 2915
Iron and Iron-Nickel......Page 2916
'Magnetic’ Silicates......Page 2917
SD Hysteresis and Susceptibility......Page 2918
Temperature Effects: Hopkinson Peak and Koenigsberger Ratio Q......Page 2921
AF Demagnetization......Page 2923
Thermal Demagnetization of SD Grains......Page 2925
Thermal Demagnetization of MD Grains......Page 2926
Resolving Multivectorial NRM......Page 2927
Thellier Paleointensity Determination......Page 2928
Stability and Domain State Tests......Page 2929
Thermoremanent Magnetization (TRM)......Page 2930
Viscous and Thermoviscous Magnetization......Page 2934
Chemical Remanent Magnetization (CRM)......Page 2937
Detrital and Post-Depositional Remanent Magnetizations (DRM and PDRM)......Page 2938
Summary......Page 2940
References......Page 2941
Introduction......Page 2947
Data Types and Methods......Page 2948
Geomagnetic Directional Information......Page 2949
Paleointensity Data and Uncertainties......Page 2950
Local and Regional Secular Variation Studies......Page 2952
The KGCFS Data Compilation......Page 2956
The Global Geomagnetic Field and Its Secular Variation on Millennial Timescales......Page 2958
The Average Field......Page 2961
Jerks, Drifts,
and Waves......Page 2968
Dipole Moment Variations......Page 2969
The Geomagnetic Spectrum......Page 2970
Cosmogenic Isotope Production Rates - the Global View Linking Geomagnetic and Climate Studies......Page 2972
Surface Exposure Dating and Local Variations......Page 2974
Outstanding Problems and Scope for Future Progress......Page 2975
Acknowledgment......Page 2976
References......Page 2977
Relevant Website......Page 2982
History of the Polarity Timescale and Excursions......Page 2983
Nomenclature for Excursions and Polarity Intervals......Page 2985
Introduction......Page 2986
The Laschamp Excursion......Page 2989
The Mono Lake Excursion......Page 2993
The Blake Excursion......Page 2995
The Iceland Basin Excursion......Page 2997
The Pringle Falls Excursion......Page 2999
Excursions in the Early Brunhes Chron......Page 3001
Background......Page 3003
Gilsa......Page 3006
Santa Rosa......Page 3007
Geomagnetic Excursions in Pre-Matuyama Time......Page 3008
C5n.2n (Late Miocene)......Page 3010
Oligocene and Eocene......Page 3011
Duration of Geomagnetic Excursions......Page 3012
Excursional Field Geometry......Page 3014
Concluding Remarks......Page 3015
References......Page 3017
Introduction......Page 3027
Paleosecular Variation......Page 3029
The Time-Averaged Field (TAF) - Departures from GAD?......Page 3030
Paleomagnetic Observations......Page 3032
Comparing data from different locations......Page 3033
Measures of PSV and the TAF......Page 3034
Global Field Models: Spherical Harmonic Representation......Page 3036
Global Database - Paleosecular Variation from Lavas (PSVRL) Database......Page 3037
Other Global Lava Flow Data Sets......Page 3038
Sedimentary Records......Page 3040
Paleosecular Variation......Page 3041
Early PSV Models......Page 3042
Giant Gaussian Process (GGP) Models......Page 3043
The Time-Averaged Field......Page 3044
Early Studies......Page 3045
The 1990s: Longitudinal Structure in the TAF?......Page 3047
Recent Studies: Joint Estimation of PSV and the TAF......Page 3048
Data sets: spatial distribution......Page 3049
Bias from unit vectors......Page 3052
Successes and Limitations of Current TAF and PSV Models......Page 3054
Toward New Global Data Sets......Page 3057
A New Generation of Paleomagnetic Field Modeling......Page 3058
Concluding Remarks......Page 3059
References......Page 3060
Introduction......Page 3064
Polarity Reversals and the Geomagnetic Polarity Timescale......Page 3067
Geomagnetic Intensity Fluctuations......Page 3071
Anomaly Skewness and Nondipole Field......Page 3078
Magnetic Source Regions......Page 3079
Initial grain size and composition......Page 3081
Low-temperature alteration......Page 3083
Magnetization of Dikes......Page 3090
Magnetization of Gabbros......Page 3093
Mantle-Derived Peridotites......Page 3097
Crustal Accretion and Structure of the Magnetic Source......Page 3098
Nonvertical Magnetic Boundaries......Page 3099
Rotations of the Magnetic Source Layer......Page 3102
Future Directions......Page 3104
Acknowledgments......Page 3108
References......Page 3109
Relevant Website......Page 3116
5.13 Paleointensities......Page 3117
Theory of Paleointensity......Page 3118
Paleointensity with Thermal Remanence......Page 3119
Linearity Assumption......Page 3121
Alteration during Heating......Page 3122
KTT family of experiments......Page 3123
Shaw family of experiments......Page 3126
Reduced number of heating steps......Page 3128
Use of controlled atmospheres to reduce alteration......Page 3129
Use of microwaves for thermal excitation......Page 3130
Paleointensity with Depositional Remanences......Page 3131
Physical Alignment of Magnetic Moments in Viscous Fluids......Page 3132
Nonflocculating environments......Page 3133
Flocculating environments......Page 3134
PostDepositional Processes......Page 3137
Normalization......Page 3138
Chemical Alteration......Page 3139
Depositional Remanences......Page 3140
Paleomagnetic Databases......Page 3141
Absolute paleointensity data......Page 3142
Relative paleointensity data......Page 3146
Selection Criteria from the PINT06 Database......Page 3147
What is the Average Strength of the Geomagnetic Field?......Page 3148
Source of scatter in the CNS......Page 3150
The oldest paleointensity records......Page 3151
The paleointensity
'saw-tooth’......Page 3152
Sediments......Page 3154
Atmospheric Interaction......Page 3157
Frequecy of Intensity Fluctuations and the Climatic Connection......Page 3160
Conclusions......Page 3162
References......Page 3163
Relevant Websites......Page 3171
Planetary Moment of Inertia and the Spin-Axis......Page 3172
Different Information in Different Reference Frames......Page 3173
Type I TPW: Slow/Prolonged TPW......Page 3174
Hypothesized Rapid or Prolonged TPW: Late Paleozoic-Mesozoic......Page 3176
Hypothesized Rapid or Prolonged TPW:
'Cryogenian’-Ediacaran-Cambrian-Early Paleozoic......Page 3178
Precision of TPW Magnitude and Rate Estimation......Page 3179
Physical Oceanographic Effects: Sea Level and Circulation......Page 3181
Chemical Oceanographic Effects: Carbon Oxidation and Burial......Page 3183
Ediacaran-Cambrian TPW:
'Spinner Diagrams’ in the TPW Reference Frame......Page 3186
Proof of Concept: Independent Reconstruction of Gondwanaland Using Spinner Diagrams......Page 3188
Summary: Major Unresolved Issues and Future Work......Page 3192
References......Page 3193
Introduction......Page 3197
Isostasy and
'Steady-State’ Equilibrium......Page 3199
The Earth’s Hypsometric Curve and Crustal Structure......Page 3200
Gravity Anomalies, Crustal Structure,
and Local Models of Isostasy......Page 3202
Departures from Local Isostasy: Flexural Isostasy......Page 3204
Earthquake Loading, Postseismic Relaxation, and the Short-Term (i.e.,
up to a Few Hundreds of Seconds) Response......Page 3208
Glacial and Lake Loading and Unloading, Rebound,
and the Interm ediate-Term (a Few Tens of Thousand Years) Response......Page 3212
Volcano and Sediment Loading and the Long-Term (Greater than Several Hundreds of Thousand Years) Response......Page 3217
The Relationship between the Long-Term Elastic Thickness and Plate and Load Age......Page 3222
Te Map......Page 3225
Correlation of Te with Temperature Structure and Shear-Wave Velocity......Page 3227
Toward an Integrated Model That Relates Elastic Thickness to Load Age on Short, Intermediate,
and Long Timescales......Page 3230
Terranes, the Wilson Cycle,
and Inheritance......Page 3231
Tectonic Setting of Geological Features......Page 3234
Surface Processes and Flexural Interactions......Page 3235
The Relative Contributions of Lithospheric Flexure to the Earth’s Topography and Gravity Anomaly Field and Mantle Convection......Page 3237
Acknowledgments......Page 3239
References......Page 3240
Glossary......Page 3245
Introduction......Page 3246
Determination of Present-Day Plate Motions......Page 3247
Techniques Used in Relative Plate Motion Studies......Page 3250
Uncertainties in relative plate rotations......Page 3251
Quantitative implementation of PURs......Page 3253
Example: Central North and South Atlantic Reconstructions......Page 3254
Diffuse Plate Boundaries......Page 3257
The Morphology of the Ocean Floor......Page 3259
Seamount Provinces......Page 3262
The Ages of Seamounts and Oceanic Islands......Page 3265
Plume Theory, Seamount Chains, and the Fixed Hot Spot Hypothesis......Page 3266
Motion of the African Plate......Page 3267
The hot-spotting technique......Page 3268
The polygonal finite rotation method......Page 3269
Moving hot spots......Page 3271
OMS: A modified Hellinger criterion for absolute plate rotations......Page 3272
Uncertainty in hot spot reconstructions using the OMS method......Page 3274
WHK: A hot-spotting-PFRM hybrid method......Page 3275
Driving Forces of Plate Tectonics......Page 3278
Ridge Push......Page 3279
Collisional Forces......Page 3281
What Drives Plate Tectonics?......Page 3283
Future Challenges......Page 3286
References......Page 3289
6.03 Plate Rheology and Mechanics......Page 3295
Introduction......Page 3296
Rock Properties as Derived From Rock Mechanics Data - Conventional Models......Page 3298
Elastic Properties......Page 3300
Brittle or Plastic Properties......Page 3301
Diffusion and dislocation creep......Page 3302
Lithospheric Structure and Goetze-Evans’ Yield Strength Envelopes......Page 3304
Maxwell Model......Page 3307
Uncertainties of Rock Mechanics Data......Page 3308
Uncertainties of the Synthetic Yield Strength Envelopes......Page 3309
Role of Frictional Heating, Pressure, Fluid Content, and Other Factors......Page 3310
Possible Ways to Parameterize Rheology Data for Geological Timescale......Page 3311
Rheology and Observations of Flexure (Te Data)......Page 3313
Intraplate Seismicity (Ts), Te, and the BDT......Page 3316
Large-Scale Lithospheric Folding......Page 3318
Age and Other Dependences of the Integrated Strength of the Lithosphere......Page 3319
Seismicity, Ts, BDT, and Long-Term Strength......Page 3326
Stability Theory - Rayleigh-Taylor Instabilities, or Survival of Cratons and Mountain Roots......Page 3330
Experiments on Normal Loading (Topography), or Survival of Cratons and Mountain Roots......Page 3331
Experiments on Compressional Tectonic Loading (Subduction versus Collision)......Page 3333
Stability Theory: Response to Large-Scale Compressional Instabilities (Folding)......Page 3335
Seismicity and Long-Term Deformation......Page 3337
Postseismic Relaxation Data and Long-Term Deformation......Page 3339
Conclusions and Future Perspectives......Page 3340
Acknowledgments......Page 3342
References......Page 3343
Introduction......Page 3348
Introduction......Page 3349
PGR Mathematical Modeling......Page 3350
Global Vertical and Horizontal Displacements from PGR......Page 3353
PGR in GPS Analyses......Page 3356
Present-Day Glacier Shrinkage and Uplift of the Alps......Page 3361
Sea-Level Changes......Page 3363
Modeling Intraplate Deformation......Page 3368
Monitoring Intraplate Deformation via GPS Analyses......Page 3371
Introduction......Page 3378
The Mediterranean: A Natural Laboratory for Understanding Plate Behavior at Subduction Zones......Page 3379
The Fingerprint of Subduction in GPS Data......Page 3381
Stress Pattern in the Mediterranean......Page 3388
Blending Seismic, GPS,
and Stress Data......Page 3389
Introduction......Page 3390
Modeling Global Coseismic and Postseismic Plate Deformation......Page 3391
The Example of the Umbria-Marche (1997) Earthquake......Page 3395
DInSAR-Retreived Coseismic Displacements......Page 3399
The Irpinia (1980) Earthquake......Page 3402
Conclusions......Page 3406
References......Page 3407
6.05 Heat Flow and Thermal Structure of the Lithosphere......Page 3411
Introduction......Page 3412
Distribution of Heat Flux: Large-Scale Overview......Page 3413
Thermal Boundary Layer Structure......Page 3414
Basal Boundary Conditions......Page 3415
The Thermal Lithosphere as Opposed to the Seismically Defined Lithosphere......Page 3416
Hydrothermal Circulation......Page 3417
Cooling Half-Space Model......Page 3418
Modified Thermal Model for the Oceanic Lithosphere......Page 3420
Large-scale variations of mantle temperature......Page 3422
Vertical Temperature Distribution......Page 3423
Crustal Heat Production......Page 3424
Mantle Heat Flux......Page 3427
Regional Variations of Heat Flow and Lithospheric Temperatures......Page 3428
Variations of Crustal Thickness......Page 3430
Compressional Orogens......Page 3432
Sedimentary basins......Page 3433
Archean conditions......Page 3434
Secular cooling in the lithosphere......Page 3435
Seismicity, Elastic Thickness,
and Thermal Regime of the Lithosphere......Page 3436
Conclusions......Page 3438
Bottom Hole Temperature (BHT) Data......Page 3439
References......Page 3440
Global Patterns of Tectonic Stress......Page 3446
Sources of the Lithospheric Stress Field......Page 3450
Absolute Stress Magnitudes and the Critically Stressed Crust......Page 3452
Stress Field Constraints on Lithospheric Deformation......Page 3456
Earthquake Focal Mechanisms......Page 3462
In Situ stress Measurements......Page 3463
References......Page 3464
Relevant Websites......Page 3466
6.07 Magmatism, Magma, and Magma Chambers......Page 3467
Introduction......Page 3468
The Nature of Magma......Page 3469
Transport Characteristics......Page 3470
Solidification Fronts......Page 3471
Solidification Front Crystallization or Phenocryst-Free Magmas......Page 3473
Phenocryst-Bearing Magma......Page 3476
Kilauea Iki Lava Lake......Page 3477
Primitive versus Primary Magmas......Page 3480
The Problem: The Diversity of Igneous Rocks......Page 3481
George Becker’s Magma Chamber......Page 3482
Historical Setting......Page 3484
Life Time Lines......Page 3485
Initial Conditions of Magmatic Systems......Page 3487
Style of Crystal Nucleation and Growth......Page 3488
The Critical Connection between Space and Composition......Page 3489
Internal transport style......Page 3492
Filling times......Page 3493
Thermal Ascent Characteristics and The Role of Thermal Convection......Page 3494
Superheat......Page 3495
Slower convective cooling in a conductive medium......Page 3496
Summary of Magmatic Initial Conditions......Page 3497
The Sudbury Igneous Complex (SIC)......Page 3498
Ferrar Dolerites,
Antarctica......Page 3501
Lessons Learned from Sudbury and the Ferrar Dolerites......Page 3505
Ocean Ridge Magmatism......Page 3506
Introductory......Page 3508
Spacing of the volcanic centers......Page 3509
Character of the Volcanic Centers......Page 3510
Subduction Regime......Page 3512
Thermal regime......Page 3513
The Source of Arc Magma......Page 3514
Slab quartz-eclogite......Page 3516
Diapirism, Rayleigh-Taylor Instability,
and Volcano Spacing......Page 3517
Solidification Front Instability......Page 3518
Sidewall Upflow......Page 3520
Fissure Flushing......Page 3521
Magmatic Systems......Page 3522
References......Page 3523
Introduction......Page 3526
Tectonic Force for Extension......Page 3530
Magmatic intrusion......Page 3532
Cohesion loss......Page 3533
Viscous flow......Page 3534
Local (crustal) isostasy......Page 3535
High-Angle versus Low-Angle Normal Faults......Page 3536
Rift Shoulder Uplift......Page 3537
Low-Angle Fault Development and Stress Rotation......Page 3539
Large Offset of Normal Faults......Page 3540
2-D Models of Fault Formation and Offset......Page 3541
Pure versus Simple Shear Rifting......Page 3542
Slow Rifting and Thermal Diffusion......Page 3550
Viscous Stresses......Page 3551
Local Isostatic Crustal Thinning......Page 3552
Dikes versus Stretching to Initiate Rifting......Page 3553
Force Available for Driving Rifting......Page 3556
Force Needed for Magmatic Rifting......Page 3557
The Meaning of Rift Straightness......Page 3561
Conclusions and Future Work......Page 3562
References......Page 3563
6.09 Dynamic Processes in Extensional and Compressional Settings - Mountain Building: From Earthquakes to Geological Deformation......Page 3568
Introduction......Page 3569
The Himalaya as a Result of the India-Asia Collision......Page 3570
Variation of Crustal Thickness across the Himalaya......Page 3571
Geological Architecture of the Himalayan Range and Southern Tibet......Page 3573
Metamorphism......Page 3577
Geophysical Constraints on the Structure of the Crust......Page 3578
Active Thrusting and Folding in the Sub-Himalaya......Page 3579
Structural evolution of the sub-Himalaya......Page 3580
River incision across the sub-Himalaya......Page 3581
Converting incision rates to uplift rates in the sub-Himalaya......Page 3582
Converting uplift rates to horizontal shortening from area balance......Page 3583
Converting uplift rates to horizontal shortening from the fault-bend fold model......Page 3585
Fluvial incision across the whole range......Page 3586
Longer-Term Geological Deformation and Exhumation......Page 3587
Foreland Deposition: A Record of Underthrusting......Page 3588
Structural Evolution of the Thrust Package......Page 3590
Exhumation of the Lesser and High Himalaya: A Record of Overthrusting......Page 3591
Overthrusting, Underthrusting,
and Accretion......Page 3593
Thermokinematic Model of the Evolution of the Range since 15Ma......Page 3594
Model implementation......Page 3596
Modeling results......Page 3599
Geodetic Deformation and the Seismic Cycle......Page 3600
Large Earthquakes in the Himalaya......Page 3601
Geodetic Deformation in the Nepal Himalaya......Page 3602
Microseismic Activity in the Nepal Himalaya......Page 3605
A Model of the Seismic Cycle in the Central Nepal Himalaya......Page 3608
Geodetic Deformation, Seismic Coupling,
and Recurrence of Large Earthquakes in the Himalaya......Page 3609
Is Interseismic Strain Stationary?......Page 3611
The Critical Wedge Theory: Does It Apply to the Himalaya?......Page 3612
Evidence for Low Friction on the MHT......Page 3615
Importance of the Brittle-Ductile Transition......Page 3616
How Does the Steep Front of the High Himalaya Relate to Tectonics, Erosion,
and Climate?......Page 3617
The Elevation and Support of Mountain Ranges: Effect of Climate and Lower Crustal Flow......Page 3619
Effect of ductile deformation in the lower crust......Page 3620
The Fate of the Indian Crust and Mantle Lithosphere......Page 3621
Conclusions......Page 3622
References......Page 3623
6.10 Fault Mechanics......Page 3631
Anderson’s Theory of Faulting......Page 3632
Overthrust Faults and the Hubert-Rubey Theory......Page 3633
Linear Elastic Fracture Mechanics......Page 3635
Critical Fault Tip Taper (CFTT) Model......Page 3636
Displacement-Length Scaling......Page 3637
Process Zones and Their Scaling......Page 3640
Cataclasite Zone Scaling......Page 3643
Interpretation of the Scaling Laws in Terms of Crack Models......Page 3645
Pinning......Page 3646
Coalescence......Page 3648
Nucleation inhibition......Page 3649
Interactions at strike-slip jogs......Page 3650
Fault Populations......Page 3653
Power law distributions......Page 3655
The Formation of Fault Populations......Page 3657
Calculation of Brittle Strain from Fault Data......Page 3659
Fault Rotation and Lockup......Page 3661
Shallow Schizosphere......Page 3662
Deep Schizosphere......Page 3663
Brittle-Plastic Transition Region......Page 3664
Shear localization and strain softening in mylonite zones......Page 3665
Synoptic Model for Faults and Shear Zones......Page 3666
Direct Evidence for Fault Strength......Page 3667
The Weak San Andreas Fault Fallacy......Page 3668
References......Page 3669
6.11 Tectonic Models for the Evolution of Sedimentary Basins......Page 3674
Introduction......Page 3675
Extensional Basin Systems......Page 3679
Back-arc rifts......Page 3680
Thermal thinning and stretching of the lithosphere: concepts and models......Page 3682
Syn-rift subsidence and duration of rifting stage......Page 3685
Shape and magnitude of rift-induced thermal anomalies......Page 3687
Stretching factors derived from quantitative subsidence analyses......Page 3688
Postrift compressional reactivation potential......Page 3690
Finite strength of the lithosphere in extensional basin formation......Page 3693
Rift-shoulder development and architecture of basin fill......Page 3694
Transformation of an orogen into a cratonic platform: the area of the European Cenozoic Rift System......Page 3697
Variscan Orogen......Page 3700
Permo-Carboniferous magmatism and lithospheric destabilization......Page 3701
Permo-Carboniferous evolution of the ECRIS Zone......Page 3702
Late Permian and Mesozoic thermal subsidence and rifting......Page 3704
Tectonic subsidence modeling......Page 3705
Development of foreland basins......Page 3708
Compressional basins: lateral variations in flexural behaviour and implications for palaeotopography......Page 3709
Lithospheric folding: an important mode of intraplate basin formation......Page 3712
Lithosphere Strength and Deformation Mode......Page 3714
Mechanical Controls on Basin Evolution: Europe’s Continental Lithosphere......Page 3718
Extensional Basin Migration: Observations and Thermomechanical Models......Page 3724
Fast Rifting and Continental Breakup......Page 3729
Thermomechanical Evolution and Tectonic Subsidence During Slow Extension......Page 3731
Postrift Inversion,
Borderland Uplift, and Denudation......Page 3733
Black Sea Basin: Compressional Reactivation of an Extensional Basin......Page 3735
Rheology and Sedimentary Basin Formation......Page 3737
Role of Intraplate Stresses......Page 3739
Strength Evolution and Neotectonic Reactivation at the Basin Margins during the Postrift Phase......Page 3741
Modes of Basin (De)formation, Lithospheric Strength,
and Vertical Motions in the Pannonian-Carpathian Basin System......Page 3744
Lithospheric Strength in the Pannonian-Carpathian System......Page 3748
Dynamic models of basin formation......Page 3750
Stretching models and subsidence analysis......Page 3752
Neogene Evolution of the Carpathians System......Page 3755
Preorogenic extensional basin......Page 3756
Flexural modeling of the foredeep basin......Page 3761
Deformation of the Pannonian-Carpathian System......Page 3764
The Iberia Microcontinent: Compressional Basins within the Africa-Europe Collision Zone......Page 3768
Constraints on Vertical Motions......Page 3770
Present-Day Stress Regime and Topography......Page 3774
Lithospheric Folding and Drainage Pattern......Page 3775
Interplay between Tectonics, Climate,
and Fluvial Transport during the Cenozoic Evolution of the Ebro Basin (NE Iberia)......Page 3777
Ebro Basin evolution: a modeling approach......Page 3779
Opening and incision of the Ebro Basin: interplay of lithospheric and surface processes......Page 3781
Conclusions and Future Perspectives......Page 3782
Acknowledgments......Page 3784
References......Page 3785
Introduction......Page 3801
Benjamin Thompson, Count Rumford (1753-1814)......Page 3802
John William Strutt,
Lord Rayleigh (1842-1919)......Page 3805
Henri Claude Bénard (1874-1939)......Page 3807
Arthur Holmes (1890-1965)......Page 3809
Anton Linder Hales (1911-2006)......Page 3811
Chaim Leib Pekeris (1908-93)......Page 3813
Harry Hammond Hess (1906-69)......Page 3814
Stanley Keith Runcorn (1922-95)......Page 3816
Observations and Evidence for Mantle Convection......Page 3818
Mantle Properties......Page 3819
Is the Mantle Layered at 660km?......Page 3820
Energy Sources for Mantle Convection......Page 3821
Origin and Cause of Plate Tectonics......Page 3822
Volatile Circulation......Page 3824
Summary and Context of the Rest of This Volume......Page 3826
References......Page 3829
7.02 Physics of Mantle Convection......Page 3831
Introduction......Page 3832
General Expression of Conservation Equations......Page 3833
General momentum conservation......Page 3835
Angular momentum conservation......Page 3836
State variables......Page 3837
Temperature......Page 3838
Poisson’s equation......Page 3839
Conservative forms of momentum and energy equations......Page 3840
General method......Page 3841
Phase change interfaces......Page 3842
Weakly deformable surface of a convective cell......Page 3843
Equation of State and Solid Properties......Page 3844
Rheology......Page 3845
Viscous Newtonian rheology......Page 3846
Maxwellian visco-elasticity......Page 3847
Nonlinear rheologies......Page 3848
Basic Balance......Page 3849
The adiabatic solution......Page 3850
Depth-dependent reference profiles......Page 3851
Nondimensionalization......Page 3852
Anelastic approximation......Page 3853
Boussinesq approximation......Page 3854
Change of nondimensionalization......Page 3855
Linear Stability Analysis for Basally Heated Convection......Page 3856
Introduction to Physics of Multicomponent and Multiphase Flows......Page 3857
Mass conservation in a multicomponent solution......Page 3858
Momentum and energy in a multicomponent solution......Page 3859
Entropy conservation in a multicomponent solution......Page 3860
Advection-diffusion equation and reaction rates......Page 3861
Conservation properties of the advection-diffusion equation......Page 3862
Diffusion in Lagrangian coordinates......Page 3864
Fluid Dynamics of Two Phase Flows......Page 3865
Momentum conservation of matrix and fluid......Page 3866
Energy conservation for two-phase flows......Page 3867
Entropy production and phenomenological laws......Page 3868
Summary equations......Page 3869
A mantle without Inertia......Page 3870
Mantle flow and postglacial models......Page 3871
A Mantle with Internal Heating......Page 3873
A Complex Rheology......Page 3874
Temperature dependence of viscosity......Page 3875
Importance of Sphericity......Page 3876
Thermal conductivity variations......Page 3877
Thermo-Chemical Convection......Page 3878
A Complex Lithosphere: Plates and Continents......Page 3879
References......Page 3881
7.03 Laboratory Studies of Mantle Convection......Page 3888
Introduction......Page 3889
Designing an Experiment: Scaling......Page 3891
Experimental Fluids......Page 3892
Heat flux determination......Page 3893
Centrifuge......Page 3895
Electrochemical technique......Page 3896
Shadowgraph......Page 3897
Schlieren......Page 3898
Local temperature measurements......Page 3899
Mach-Zender interferometry......Page 3901
Differential interferometry......Page 3903
Isotherms: thermochromic liquid crystals......Page 3904
Heat flow measurements......Page 3905
Composition......Page 3906
2D and 3D field measurements......Page 3907
Surface Displacement......Page 3908
Rayleigh-Taylor Instabilities......Page 3909
Simple Rayleigh-Benard Convection Studies......Page 3911
Convection at Relatively Low Ra(RacleRale106)......Page 3912
Patterns for Prge100......Page 3914
Thermal boundary layer instabilities......Page 3915
Large-scale (cellular) circulation and plumes at high Pr......Page 3917
Convective Regime in an Isoviscous Mantle......Page 3918
Patterns and regimes......Page 3919
Characteristics of the stagnant lid regime......Page 3921
Plate Tectonics in the Laboratory?......Page 3922
Stagnant-Lid Regime and Lithosphere Cooling......Page 3923
Bottom- and internally-heated fluid......Page 3925
Inhomogeneous Cooling/Continents......Page 3926
Moving Top Boundary......Page 3927
Compositionally Buoyant Plumes......Page 3929
Thermals......Page 3930
The stem......Page 3931
Thermal starting plumes......Page 3932
Interaction of Plumes with a Large-Scale Flow......Page 3933
Interaction with a moving or rifting lithosphere......Page 3934
Mixing of Passive Tracers......Page 3935
Convection in an Initially Stratified Fluid......Page 3936
Regime diagrams......Page 3937
Entrainment and mixing......Page 3942
Morphology of Ridges......Page 3944
Ingredients for Subduction......Page 3947
The Surface Story and the Initiation of Subduction......Page 3948
Mantle flow and thermal evolution of the slab......Page 3950
Fixed rollback velocity......Page 3951
Free rollback velocity......Page 3952
Conclusions......Page 3954
References......Page 3955
7.04 Analytical Approaches to Mantle Dynamics......Page 3965
Introduction......Page 3966
Formulating Geodynamical Model Problems: Three Case Studies......Page 3967
Heat Transfer from Mantle Diapirs......Page 3968
Plume Formation in TBLs......Page 3969
Plume-Lithosphere Interaction......Page 3970
Buckingham’s Pi-Theorem and Dynamical Similarity......Page 3971
Nondimensionalization......Page 3972
Scaling Analysis......Page 3973
Conductive Heat Transfer......Page 3974
Classification of Self-Similar Solutions......Page 3975
Intermediate Asymptotics with Respect to Parameters: The R-T Instability......Page 3976
Basic Equations and Theorems......Page 3977
3-D flows......Page 3979
Steady unidirectional flow......Page 3980
Models for subduction zones and ridges......Page 3981
Viscous eddies......Page 3982
2-D flow in Cartesian coordinates......Page 3983
Bispherical coordinates......Page 3985
Flow due to point forces......Page 3986
Singular solutions in the presence of a boundary......Page 3987
Boundary-integral representation......Page 3988
Flow Driven by Internal Loads......Page 3989
Wave-domain Green functions......Page 3990
The propagator-matrix method......Page 3992
Correspondence Principles......Page 3994
Surface Loading of a Stratified Elastic Sphere......Page 3995
BL Theory......Page 3996
Von Mises’s transformation......Page 3997
The MMAE......Page 3998
Long-Wave Theories......Page 4001
Lubrication Theory......Page 4002
Plume-Plate and Plume-Ridge Interaction Models......Page 4003
Long-Wave Analysis of Buoyant Instability......Page 4004
Theory of Thin Shells, Plates,
and Sheets......Page 4005
Effective Boundary Conditions From Thin-Layer Flows......Page 4007
Hydrodynamic Stability and Thermal Convection......Page 4008
R-T Instability......Page 4009
Rayleigh-Bénard Convection......Page 4010
Order-parameter equations for finite-amplitude thermal convection......Page 4011
Amplitude equation for convection rolls......Page 4012
Finite-amplitude convection rolls and their stability......Page 4014
Envelope equation for modulated convection rolls......Page 4015
Phase diffusion equation for thermal convection......Page 4016
Flow in the isothermal core......Page 4017
TBLs and heat transfer......Page 4018
Thermal Convection in More Realistic Systems......Page 4019
References......Page 4021
Introduction......Page 4025
Governing Equations and Initial and Boundary Conditions......Page 4026
FD implementation of the governing equations......Page 4027
Approximations of spatial derivatives and solution approaches......Page 4028
FV Method......Page 4030
Spectral Methods......Page 4031
A weak formulation......Page 4032
An FE implementation......Page 4034
The Uzawa algorithm for the matrix equation......Page 4036
Multigrid solution strategies......Page 4037
Stokes Flow: A Penalty Formulation......Page 4039
The SUPG Formulation for the Energy Equation......Page 4040
Solution approaches......Page 4042
Solid-State Phase Transition......Page 4044
Concluding Remarks and Future Prospects......Page 4045
References......Page 4047
Relevant Websites......Page 4050
7.06 Temperatures, Heat and Energy in the Mantle of the Earth......Page 4051
Introduction......Page 4052
Breakdown of the Energy Budget......Page 4053
Changes in Gravitational Energy: Contraction due to Secular Cooling......Page 4054
Secular Cooling Equation......Page 4056
Oceanic Heat Flux Data......Page 4057
Initial condition: Temperature distribution at the ridge axis......Page 4059
Bottom boundary condition......Page 4060
Check: Heat flux data......Page 4061
Depth of the seafloor......Page 4062
Heat Loss through the Ocean Floor......Page 4063
Summary......Page 4064
Average Continental Heat Flux and Heat Loss through Continental Areas......Page 4065
Direct estimates of Moho heat flux......Page 4066
Crustal heat production and Moho heat flux......Page 4067
Compressional orogens......Page 4069
Zones of extension and continental margins......Page 4070
Radiogenic Sources in the Mantle......Page 4071
Heat Flux from the Core......Page 4074
Other Sources: Tidal Heating,
Crust-Mantle Differentiation......Page 4076
The Present-Day Mantle Geotherm......Page 4077
Temperature versus Time......Page 4079
Early Earth......Page 4080
Magma Ocean Evolution......Page 4081
Average Secular Cooling Rate......Page 4082
Parametrized Cooling Models......Page 4083
Convection with Plates......Page 4085
Cooling through the Ocean Floor......Page 4086
Vagaries of Seafloor Spreading......Page 4087
Summary......Page 4088
Contraction of Earth due to Secular Cooling......Page 4089
Gravitational Energy Changes......Page 4090
Half-Space Cooling Model with Temperature-Dependent Properties......Page 4091
Plate Models for the Oceanic Lithosphere......Page 4092
Average Thermal Structure and Temperature Changes in Upwellings and Downwellings......Page 4093
Seafloor Age Distribution as Seen from Models of Mantle Convection......Page 4094
References......Page 4096
Introduction......Page 4102
Convective Instability versus Heating by Hot Spots - Depth-Age and Heat flow......Page 4103
Geoid Height as a Measure of Upper-Mantle Thermal Structure......Page 4106
Seismic Velocity and Attenuation as Measures of Upper-Mantle Structure and Flow......Page 4107
The Age of Thermal Convective Instability beneath Oceanic Lithosphere......Page 4108
Implications from Recent Theoretical and Experimental Studies of Convective Instability......Page 4110
Intraplate Volcanism as an Indicator of Upper-Mantle Convective Activity......Page 4112
Melting in Convectively Driven Upwellings......Page 4113
Melting, Melt Extraction,
and the Chemical Lithosphere......Page 4114
2-D versus 3-D Upwelling and the Spreading Rate Dependence of Seafloor Structure......Page 4115
Summary......Page 4116
References......Page 4117
Introduction......Page 4121
Slab Geometry......Page 4123
Slab Structure......Page 4126
Slab Structure Seen from Seismic Tomography......Page 4128
Shear-Wave Splitting in Subduction Zones......Page 4130
Slab Modeling and Thermal Structure......Page 4132
Kinematic Models and Slab Thermal Structure......Page 4133
Hybrid Kinematic-Dynamic Slab-Wedge Models......Page 4137
Dynamic Models and Mantle Flow......Page 4140
Phase Transformations: Dynamics......Page 4143
Shear Heating......Page 4146
Petrology, Geochemistry,
and Arc Volcanics......Page 4147
Subduction and Volatiles......Page 4148
Geoid and Topography......Page 4149
Are Slabs Strong or Weak?......Page 4152
Are Deep Earthquakes the Result of a Metastable Transformation of Olivine to Wadsleyite?......Page 4154
How Much Water Is Carried into the Transition Zone?......Page 4155
Summary......Page 4156
References......Page 4157
7.09 Hot Spots and Melting Anomalies......Page 4167
nomenclature......Page 4168
Long-lived age-progressive volcanism......Page 4169
Short-lived age-progressive volcanism......Page 4177
No age-progressive volcanism......Page 4178
Continental hot spots......Page 4179
The hot-spot reference frame......Page 4182
Topographic Swells......Page 4183
Continental LIPs......Page 4184
LIPs near or on continental margins......Page 4185
Oceanic LIPs......Page 4187
Connections to hot spots......Page 4188
Global seismic studies......Page 4189
Local seismic studies of major hot spots......Page 4191
Summary of Observations......Page 4195
Methods......Page 4196
Generating the Melt......Page 4197
Composition......Page 4198
Mantle flow......Page 4200
Generating swells: Lubrication theory......Page 4201
Generating swells: Thermal upwellings and intraplate hot spots......Page 4203
Generating swells: Thermal upwellings and hot-spot-ridge interaction......Page 4204
TBL instabilities......Page 4206
Thermochemical instabilities......Page 4207
Plume buoyancy flux and excess temperature......Page 4208
Chains, Age Progressions,
and the Hot-spot Reference Frame......Page 4209
Large Igneous Provinces......Page 4210
Variable hot-spot durations from transient thermal plumes......Page 4213
Forming melting anomalies by upper-mantle processes......Page 4214
Geochemistry of Hotspots and Melting Anomalies Vs MORB......Page 4216
Conclusions and Outlook......Page 4217
References......Page 4218
Relevant Websites......Page 4231
7.10 Mantle Geochemical Geodynamics......Page 4232
Introduction......Page 4233
Fractionation of Major and Trace Elements......Page 4234
Primordial (fractionation of magma ocean, core formation,
early atmosphere)......Page 4235
Continental crust......Page 4236
Processing rate of mid-ocean ridge melting......Page 4237
Reactions with the core......Page 4238
3He/4He ratios......Page 4239
Argon outgassing......Page 4240
Neon, Xenon,
Krypton......Page 4241
Lead paradoxes......Page 4242
Seismological......Page 4243
Geophysical Constraints in Favor of Whole-Mantle Convection......Page 4244
Thin layer (DPrime region)......Page 4245
Stirring, Stretching, Mixing,
and Dispersal......Page 4247
Asymptotic stretching rate......Page 4248
Measures of stretching......Page 4249
Steady-state 2-D flows......Page 4250
Exponential stirring......Page 4251
Plumes versus sheets......Page 4252
Depth-dependent viscosity......Page 4253
Composition-dependent viscosity......Page 4254
Based on separation......Page 4255
Inter-cell dispersal......Page 4256
Eddy diffusivity?......Page 4257
Residence Time......Page 4258
Background......Page 4259
Laminar flows......Page 4260
Turbulent regime......Page 4261
Summary of different' mixing time
’estimates......Page 4262
Spectrum of Chemical Heterogeneity......Page 4263
The balance between chemical and thermal buoyancy......Page 4264
Thin,
nonconvecting lower layer......Page 4265
Temperature......Page 4266
Entrainment of surrounding material by mantle plumes......Page 4267
Laboratory experiments......Page 4268
Mathematical or numerical approaches......Page 4270
General evolution......Page 4271
Modeling studies......Page 4273
Chemical layering induced by phase transitions......Page 4275
Composition-dependent phase transitions and subducted slabs......Page 4276
The effect of chemical layering on core heat flow and planetary thermal evolution......Page 4277
On the Accuracy of Numerical Thermochemical Convection Calculations......Page 4278
Continent formation......Page 4279
U-Pb and HIMU......Page 4280
3He/4He......Page 4281
Ar and He budget......Page 4282
Two recipes......Page 4283
Two-stage melting......Page 4284
Source statistics and component fractions......Page 4285
Can OIB and MORB be produced by the same statistical distribution?......Page 4286
Transition Zone Water Filter Concept......Page 4287
Can geochemical and geophysical observations be reconciled with current paradigms?......Page 4288
References......Page 4289
A Scientific Journey to the Center of the Earth......Page 4301
State of the Core......Page 4303
The Search for a Dynamo Theory......Page 4305
Core Dynamics and the Geomagnetic Field......Page 4311
Core Energetics......Page 4312
Convection and Dynamo Action......Page 4314
Simulating the Geodynamo......Page 4316
Mantle Effects within the Core......Page 4318
Future Prospects and Problems......Page 4320
Energetics of the Core......Page 4321
The Large Scale Flow in the Core......Page 4322
Turbulence and Small-Scale Dynamics in the Core......Page 4323
Numerical Dynamo Simulations......Page 4324
Magnetic Polarity Reversals in the core......Page 4325
Laboratory Experiments on Core Dynamics......Page 4326
Core-Mantle Interactions......Page 4327
References......Page 4328
8.02 Energetics of the Core......Page 4331
nomenclature......Page 4332
Introduction......Page 4333
Composition......Page 4334
Dynamo Behavior over Time......Page 4335
Energy and Entropy Equations......Page 4336
Preliminaries......Page 4337
Energy Balance......Page 4338
General expression......Page 4339
Heat of reaction QH......Page 4340
Pressure effect on freezing QPL......Page 4341
Entropy Terms......Page 4342
Example Core Structure......Page 4343
Radioactive heating (QR,
ER)......Page 4345
Other contributions......Page 4346
General Behavior......Page 4347
Core Properties......Page 4348
Thermodynamic properties......Page 4349
Ohmic dissipation......Page 4350
Present-day CMB heat flow......Page 4351
Comparison with other models......Page 4352
Present-Day Behavior......Page 4353
Introduction......Page 4354
Theoretical Models......Page 4355
Age of the IC......Page 4359
Summary and Conclusions......Page 4361
References......Page 4362
Dynamos and Self-Excited Dynamos......Page 4366
The Geodynamo Hypothesis......Page 4367
Pre-Maxwell Theory......Page 4368
Constitutive Relations......Page 4369
Induction Equation: Magnetic Reynolds Number......Page 4370
The Perfect Conductor: Alfvén’s Theorem......Page 4371
The Imperfect Conductor: Reconnection......Page 4373
The Dynamo Condition......Page 4377
EM Induction in Spherical Conductors......Page 4379
The Eigenvalue Problem for Steady Flows......Page 4381
Bounds on the Magnetic Reynolds Number......Page 4382
Antidynamo Theorems......Page 4383
One-Dimensional Models......Page 4385
Two-Dimensional Models......Page 4386
Three-Dimensional Models......Page 4387
Induction by Cyclonic Turbulence......Page 4388
Mean Field Dynamos......Page 4390
Saturation: Intermediate Models......Page 4392
Basic Equations and Boundary Conditions......Page 4393
Classical Theory of Rotating Fluids......Page 4394
Coriolis Magnetohydrodynamics......Page 4397
Final Remarks......Page 4400
References......Page 4401
Introduction......Page 4405
Westward Drift......Page 4406
The Frozen-Flux Hypothesis......Page 4407
Boundary Conditions......Page 4408
The Large-Scale Approximation......Page 4409
Toroidal Flows......Page 4410
Tangentially Geostrophic Flows......Page 4411
Comparison of Solutions Constructed with Different Nonuniqueness-Reducing Assumptions......Page 4412
Limitations in Resolution of Nonuniqueness......Page 4413
The Horizontal Field Components......Page 4414
Effects of Diffusion......Page 4415
Higher-Resolution Flows from Detailed Models of SV from Satellite Observations......Page 4416
Angular Momentum - LOD Variation,
and Correlation with Core Angular Momentum......Page 4419
Probing the Magnetic Field Interior to the Core......Page 4420
Coupling of Torsional Oscillations to the Outer and Inner Core......Page 4421
Wave Motion as an Explanation for Secular Variation......Page 4422
Polar Vortices......Page 4423
Modeled Core Flow and the Dynamics of the Core......Page 4425
References......Page 4426
8.05 Thermal and Compositional Convection in the Outer Core......Page 4429
nomenclature......Page 4430
The Need for a Dynamo......Page 4431
Velocities in the Core......Page 4432
The Heat Flux and Core Cooling......Page 4433
The Dynamics of Core Convection......Page 4435
Compressible and Anelastic Equations......Page 4437
Adiabatic Reference State......Page 4440
Equations for the Convective Perturbations......Page 4441
Boundary Conditions......Page 4442
The Boussinesq Limit......Page 4443
Formulation of the Equations for Numerical Solution......Page 4444
Thermal Convection......Page 4445
Compositional Convection......Page 4447
The Proudman-Taylor Theorem......Page 4448
The Onset of Instability......Page 4450
The Onset of Instability in the Rapidly Rotating Limit......Page 4452
The Ekman Boundary Layers......Page 4454
Linear properties of the annulus model......Page 4456
Weakly nonlinear theory and the annulus model......Page 4457
Zonal flows and multiple jets......Page 4458
Thermal Wind......Page 4459
The inertial theory of rapidly rotating convection......Page 4460
Heat transport in rapidly rotating convection......Page 4462
Flux Expulsion and Flux Rope Formation......Page 4463
Nonrotating magnetoconvection......Page 4464
Onset of plane-layer rotating magnetoconvection......Page 4465
Waves in the core......Page 4466
Boundary layers in rotating,
magnetic fluids......Page 4467
Onset of Rotating Magnetoconvection in Spherical Geometry......Page 4468
Magnetic Instabilities......Page 4469
Taylor’s Constraint......Page 4470
Numerical Simulations of Nonlinear Convection-Driven Dynamos......Page 4471
Convection outside the tangent cylinder: picture from numerical simulations......Page 4473
Convection inside the tangent cylinder: picture from numerical simulations......Page 4474
Scaling Laws and Dynamo Simulations......Page 4475
Heterogeneous Boundary Conditions and Stable Layers Near the CMB......Page 4476
Conclusions and Future Developments......Page 4478
References......Page 4479
Why Does Turbulence Occur?......Page 4484
Forces and Fluxes Affecting Core Turbulence......Page 4485
The plume region......Page 4486
Reference State......Page 4487
Convective Equations......Page 4490
Momentum and Magnetic Diffusion Equations......Page 4491
Scaling and Structure of Plumes......Page 4493
Dynamics of the Plume Region......Page 4494
Plume Flux......Page 4495
Plume Dynamo Action......Page 4496
Cascades and Transfers of Energy in Core Turbulence......Page 4497
The Need for Parametrization......Page 4498
Unresolved Issues and Future Directions......Page 4499
Evolution of Composition......Page 4500
Evolution of Specific Entropy......Page 4501
References......Page 4502
nomenclature......Page 4504
Motivation......Page 4505
Equations of Motion......Page 4506
Inertial Oscillations in Infinitely Extended Fluids......Page 4508
Ekman Layers......Page 4510
Inertial Oscillations in Spherical Shells......Page 4512
The Mathematical Problem......Page 4513
Ray Geometry......Page 4514
Numerical Simulations......Page 4515
Precession......Page 4516
Solutions of the Inviscid Equation of Motion......Page 4517
Viscous Effects......Page 4518
Experiments......Page 4520
Numerical Solutions......Page 4521
Laminar flows......Page 4522
Boundary layer instability......Page 4525
Instabilities of the bulk flow......Page 4526
Saturation and turbulence......Page 4529
Tides......Page 4531
Interaction with Buoyancy and Magnetic Fields......Page 4533
Summary and Outlook......Page 4536
References......Page 4538
Introduction......Page 4541
Fundamental Ingredients......Page 4543
Basic Equations and Nondimensional Parameters......Page 4544
Mechanical conditions......Page 4545
Thermal boundary conditions and distribution of buoyancy sources......Page 4546
Compressible models......Page 4547
Poloidal/toroidal decomposition......Page 4548
Radial representation......Page 4549
Spectral equations......Page 4550
Time integration......Page 4551
Boundary conditions and inner core......Page 4552
Numerical truncation, hyperdiffusion,
and subgrid scale models......Page 4554
Local Methods......Page 4555
General properties of standard models: Weakly versus strongly driven dynamos......Page 4557
Variations and non-dipolar dynamos......Page 4560
Mechanism of magnetic field generation......Page 4562
Taylor state and torsional oscillations......Page 4564
Scaling laws for dynamos......Page 4566
CMB field morphology......Page 4568
Magnetic power spectra......Page 4570
Secular variation......Page 4571
Comparison with the paleomagnetic field......Page 4572
Mantle influence on the dynamo......Page 4573
Perspectives......Page 4574
References......Page 4575
Observations......Page 4579
Models......Page 4584
References......Page 4591
Introduction......Page 4594
Composition of the Core......Page 4595
Phase Diagram of Iron Alloy......Page 4596
Solidification of the Inner Core......Page 4598
Grain Size and Rheology in the Inner Core......Page 4600
An Overview......Page 4601
Anisotropy of h.c.p. Iron......Page 4602
Dynamical Models......Page 4603
Solidification Texturing Models......Page 4604
Properties and Structure of the Inner-Core Boundary......Page 4605
Inner-Core Attenuation and Scattering......Page 4606
The Deep Inner Core and the Inner-Core Transition Zone......Page 4607
Gravitational Coupling......Page 4608
Summary......Page 4609
References......Page 4610
Introduction......Page 4614
Formation of Taylor Columns......Page 4615
Ekman boundary layers......Page 4616
Stewartson layers......Page 4618
Geostrophic zonal motions in precession experiments......Page 4620
Quasi-geostrophic turbulence......Page 4622
Onset of Convection......Page 4623
Developed Convective States......Page 4624
Zonal Flows......Page 4626
Magnetohydrodynamics......Page 4627
Internal Magnetic Layers......Page 4628
Turbulence Under the Influence of a Magnetic Field......Page 4630
Experimental Dynamos......Page 4631
The Riga Dynamo......Page 4632
The Karlsruhe Dynamo......Page 4633
Turbulence and Dynamo Onset......Page 4634
Toward a Magnetostrophic Dynamo?......Page 4635
References......Page 4636
Thermal Interactions......Page 4639
Electromagnetic Interactions......Page 4643
Mechanical Interactions......Page 4646
Chemical Interactions......Page 4648
Conclusions......Page 4649
References......Page 4650
How Should We Think of Earth and Earth Evolution?......Page 4653
History and Themes......Page 4654
Important Ideas......Page 4656
Some Useful Estimates......Page 4657
Commentary on Formation Models......Page 4660
Commentary on Early Evolution Models......Page 4661
Outstanding Questions......Page 4662
References......Page 4663
Introduction......Page 4664
The Birth of the Solar System......Page 4665
Meteorites......Page 4667
Meteorites and the Composition of the Earth and Its Primary Reservoirs......Page 4669
The Circumstellar Disk and the Composition of the Earth......Page 4672
Dynamics of Planet Formation......Page 4674
The Age of the Earth......Page 4675
Short-Lived Nuclides and Early Processes......Page 4678
Rates of Earth Accretion and Differentiation......Page 4680
First Principles of Chemical Constraints on Core Formation......Page 4682
The
'Deep Magma Ocean’ Model of Core Formation......Page 4684
Core Segregation during Growth of the Earth......Page 4686
Oxidation State of the Earth during and after Accretion......Page 4688
Isotopic Evidence for Volatile Losses from the Earth during Accretion......Page 4689
Hidden Reservoirs,
Impact Erosion, and the Composition of the Earth......Page 4692
Concluding Overview......Page 4694
References......Page 4696
Introduction and Present State of Cores in Solar System Bodies......Page 4702
The Relevance of Iron Meteorites......Page 4703
History of Ideas on Core Formation......Page 4705
Accretion......Page 4706
Decay of radioactive nuclides......Page 4708
Heating due to the energy of impacts......Page 4709
Heating through the reduction of gravitational potential energy......Page 4711
Differentiation Mechanisms......Page 4712
Percolation......Page 4713
Metal-silicate separation in a magma ocean......Page 4716
Summary and implications for chemical equilibration......Page 4719
Core-Formation Timescales......Page 4720
Introduction to siderophile element geochemistry......Page 4722
Metal-silicate equilibration at high pressure and temperature......Page 4724
Inefficient core formation......Page 4727
Addition of outer-core material to the lower mantle......Page 4728
Metal-silicate fractionation models......Page 4729
Light Elements in the Core......Page 4731
Summary......Page 4734
References......Page 4735
nomenclature......Page 4742
Earth Accretion and the Giant Impact Hypothesis......Page 4743
Geochemical Evidence for Magma Ocean......Page 4745
Adiabats......Page 4746
Lower Mantle......Page 4747
Viscosity of the Magma Ocean......Page 4749
Convective Heat Flux......Page 4751
Convective Velocities......Page 4752
How Are Crystals Suspended by Convection?......Page 4753
Energetics of Convective Suspension......Page 4754
Conditions for Equilibrium Crystallization......Page 4755
Nucleation......Page 4756
Ostwald Ripening......Page 4758
Crystallization beyond the Rheological Transition......Page 4759
Cessation of Suspension......Page 4760
Cessation of Liquid-State Convection......Page 4761
Solid-State Convection......Page 4762
Summary......Page 4763
References......Page 4764
Introduction......Page 4771
Accretion......Page 4772
Noble Gases: Evidence for Early,
Rapid Degassing......Page 4774
Deuterium/Hydrogen Ratios and Earth’s Hydrosphere......Page 4775
Impacts and Volatile Loss......Page 4776
Formation and Evolution of the Atmosphere......Page 4778
Ancient Rocks: Signatures of Damp Material in and on the Early Earth......Page 4779
Constraints on the Volume of the Oceans through Time......Page 4780
Degassing and Regassing Rates......Page 4781
The Residence Mechanisms and Effects of Water on Mantle Properties......Page 4783
Rheology......Page 4786
Water/Hydrogen in the Core?......Page 4787
References......Page 4788
Introduction......Page 4794
Physical Preliminaries......Page 4795
Global Heat Balance......Page 4796
Heat Transfer by Seafloor Spreading......Page 4797
Parametrized Convection......Page 4798
Changes in the Mode of Convection......Page 4799
Pressure-Release Melting at Mid-Oceanic Ridges......Page 4801
Aftermath of the Moon-Forming Impact......Page 4803
Steady-State Mush Ocean and Transition to Plate Tectonics......Page 4804
Zircon Evidence......Page 4806
Seafloor Spreading and Oceanic Crust......Page 4808
Subduction and Continental Lithosphere......Page 4809
The Rate of Plate Tectonics over Time......Page 4810
Biological Implications......Page 4811
Conclusions and Musings......Page 4813
Acknowledgments......Page 4814
References......Page 4816
Introduction......Page 4819
General......Page 4821
Problems with the simple
'andesite model’......Page 4822
The Eu dilemma......Page 4823
Crustal foundering......Page 4824
The Lithospheric Mantle and Continent Stability......Page 4825
General......Page 4826
Timing and Rates of Crustal Growth......Page 4827
The Reymer and Schubert Dilemma......Page 4828
General......Page 4829
Mantle Overturn and Crust Formation Episodes......Page 4833
Phase I......Page 4835
Phase IV......Page 4836
The Sumozero-Kenozero and Kostomuksha Orogeny (sim2.8-2.9Ga)......Page 4837
The Birimian Orogeny (sim2.2Ga)......Page 4838
References......Page 4839
Cooling and the Age of Earth......Page 4844
The Convecting Mantle......Page 4845
A Reference Thermal History......Page 4847
Internal Radioactivity and the Present Cooling Rate......Page 4849
Effect of Volatiles on Mantle Rheology......Page 4850
Two-Layer Mantle Convection......Page 4851
Static Lithosphere Convection,
and Venus......Page 4852
Coupled Core-Mantle Evolution and the Geodynamo......Page 4853
Episodic Histories......Page 4855
Strong Compositional Lithosphere......Page 4856
Implications for Tectonic Evolution......Page 4857
Viability of Plate Tectonics......Page 4858
History of Plumes......Page 4859
References......Page 4861
Introduction......Page 4864
Thermodynamic Properties......Page 4865
Light elements......Page 4866
Temperature Structure......Page 4867
The CMB Region......Page 4869
Dynamo Behavior Over Time......Page 4870
Formation and Initial State......Page 4871
Core cooling......Page 4872
Maintaining the geodynamo......Page 4873
Present-day energy budget......Page 4874
Thermal evolution......Page 4875
Parameters......Page 4876
Inner-core age......Page 4877
Initial core temperature......Page 4880
Inner-core growth......Page 4881
Core-mantle boundary......Page 4882
Summary......Page 4883
References......Page 4884
Polar Motion and Length-of-Day Variations through (Geological) Time......Page 4889
Variations in the l.o.d......Page 4891
Polar Motion: The Annual and Chandler Wobbles......Page 4893
Global Theory of the GIA Process......Page 4896
Computation of the Rotational Response to Earth-Ice-Ocean Interactions in the Ice Age......Page 4899
The
'Equivalent Earth Model’ Approach of Munk and McDonald (1960)......Page 4900
Models of the History of Variations in the Elements of Earth’s Moment of Inertia Tensor on the Multimillenial Timescale of the Ice-Age Cycle......Page 4902
Ancient Eclipse Observations and the Nontidal Acceleration of Rotation......Page 4905
Millenial Timescale Polar Wander and the Glaciation-Deglaciation Cycle......Page 4907
Earth’s Rotational Response to the Cyclic Reglaciation Cycle of Late Pleistocene Time: Data-Model Intercomparisons......Page 4909
The Influence of Rotational Feedback upon Postglacial RSL History and Its Impact upon Predictions of Earth Rotation Anomalies......Page 4910
Measurements of the Strength of the Expected Quadrapolar
'Signature’ of the Rotational Feedback Effect upon Postglacial Sea-Level Histories......Page 4916
The Impact of Variations in the Geometry of Earth’s Orbit around the Sun upon Earth System Evolution......Page 4925
The Astronomical Imprint on Oxygen-Isotopic Records from Deep-Sea Sedimentary Cores......Page 4926
'Orbital Tuning’ and the Age of the Brunhes-Matuyama Geomagnetic Polarity Transition......Page 4929
Earth Rotation Variations and Mantle Convective Mixing......Page 4930
References......Page 4936
Introduction......Page 4940
Mars......Page 4943
Inflammable Atmosphere......Page 4944
Permanent Liquid Water......Page 4945
Carbon-Based Life......Page 4946
Spheroidal Weathering......Page 4948
Convex Slope......Page 4949
Argillic Horizon......Page 4950
Civilization......Page 4951
Origin of Life on Earth......Page 4952
Geological Records......Page 4953
Other Worlds......Page 4954
Life and Air......Page 4955
Life and Water......Page 4957
Life and Soil......Page 4959
Life and Rocks......Page 4960
References......Page 4962
Introduction......Page 4966
Our Planetary System......Page 4967
Planetary Missions......Page 4970
Planet and Satellite Orbits and Rotation States......Page 4974
Composition and Interior Structure of Planets......Page 4975
Surfaces and Atmospheres......Page 4978
Energy Balance and Evolution......Page 4982
Magnetic Fields and Field Generation......Page 4985
Origin of the Solar System......Page 4988
Concluding Remarks......Page 4989
References......Page 4990
Relevant Websites......Page 4991
10.02 Interior Structurecomma Compositioncomma and Mineralogy of the Terrestrial Planets......Page 4992
Introduction......Page 4993
Geodesy......Page 4994
Rotation and Tides......Page 4995
Gravity and Topography......Page 4996
Electromagnetics......Page 4997
Seismology......Page 4998
Material Properties......Page 4999
Two- and Three-Layer Structural Models......Page 5000
Governing equations......Page 5001
Equation of state......Page 5002
Numerical solution......Page 5004
Interior Structure......Page 5005
Mineralogy......Page 5006
Interior Structure......Page 5007
Lunar Crust......Page 5008
Lunar Seismology and Mineralogy......Page 5009
General......Page 5012
Interior Structure......Page 5013
Magnetic Field......Page 5014
Future Exploration......Page 5015
Interior Structure......Page 5016
Composition......Page 5019
Mineralogy......Page 5020
Venus......Page 5022
Composition......Page 5023
Dynamics......Page 5024
Summary and Outlook......Page 5025
References......Page 5026
Introduction......Page 5034
The Apollo PSE Data......Page 5039
Seismic Velocity Structure: Crust and Mantle......Page 5042
Very Deep Interior and Joint Seismic/Gravity Inversions......Page 5047
Mineralogical and Thermal Interpretation of Lunar Seismic Models......Page 5048
Internal Seismic Activity......Page 5051
External Seismic Activity: Artifical and Natural Impacts......Page 5056
Theoretical Background......Page 5058
Mars Hum and Martian Atmospheric Sources......Page 5063
Venus Atmospheric Seismology......Page 5065
Giant Planets Seismology......Page 5067
Interior Structure of Mars......Page 5071
Martian Seismic Noise......Page 5073
Body-Wave Detection......Page 5075
Normal Mode Excitation and Tidal Observations......Page 5076
Concluding Remarks......Page 5077
References......Page 5081
10.04 The Rotation of the Terrestrial Planets......Page 5088
Introduction......Page 5089
Precession......Page 5090
Nutation, polar motion,
and length-of-day variations......Page 5091
Kinematical relation between polar motion and nutation......Page 5092
Basic equations......Page 5094
Mass redistribution......Page 5096
Periodic rotation variations......Page 5097
Hamiltonian Equations and Long-Term Evolution......Page 5098
Gravitational tides......Page 5100
Thermal atmospheric tides......Page 5101
Core-mantle friction......Page 5102
Long-Term Spin Evolution......Page 5103
Rigid nutations......Page 5104
Nonrigid nutations......Page 5105
Nutation and interior structure......Page 5107
Rotation Speed Variations......Page 5108
Seasonal polar motion......Page 5111
Chandler wobble......Page 5112
Long-Term Spin Evolution......Page 5113
Wobble, LOD Variations,
and Nutation......Page 5114
Spin-orbit resonance......Page 5115
Precession about the Cassini state and nutation......Page 5117
Free and forced libration......Page 5119
Forced libration and interior structure......Page 5120
Free libration and interior structure......Page 5122
Summary......Page 5123
References......Page 5124
Introduction......Page 5130
Mathematical Preliminaries......Page 5131
Spherical Harmonics......Page 5132
The Potential, Gravity,
and Geoid......Page 5133
Topography......Page 5136
Gravity......Page 5138
Topography......Page 5139
Gravity......Page 5140
Spectral analysis......Page 5142
Gravity......Page 5143
Spectral analysis......Page 5145
Topography......Page 5146
Spectral analysis......Page 5148
Methods for Calculating Gravity from Topography......Page 5149
Crustal Thickness Modeling......Page 5151
Spatial Domain......Page 5152
Spectral Domain......Page 5154
Localized Spectral Analysis......Page 5157
Earth......Page 5158
Venus......Page 5160
Mars......Page 5162
The Moon......Page 5163
Future Developments and Concluding Remarks......Page 5164
Acknowledgments......Page 5165
References......Page 5166
Introduction......Page 5172
Impact Craters - Morphology......Page 5174
Impact Crater Scaling Laws......Page 5176
Impact velocity scaling......Page 5177
Strength and gravity scaling......Page 5178
Impact angle scaling......Page 5180
Impact heating, melting,
vaporization......Page 5181
Size-Frequency Distribution of Impact Craters......Page 5182
Hartmann Production Function......Page 5183
Neukum Production Function......Page 5184
Impact Rate Estimates......Page 5186
Impact Probability......Page 5187
Principles of Surface Dating by Crater Counting......Page 5190
Earth-Moon System......Page 5193
Mercury......Page 5196
Problem of Interpretation of Small Craters......Page 5197
Secondary craters on Mars......Page 5199
SFD for secondary craters......Page 5200
References......Page 5201
Relevant Websites......Page 5207
Introduction......Page 5208
The Offset Tilted Dipole......Page 5210
Spherical Harmonic Models......Page 5211
Observations......Page 5213
Models......Page 5214
Venus......Page 5215
Observations......Page 5216
Models......Page 5219
Jupiter......Page 5221
Observations......Page 5222
Models......Page 5223
Discussion......Page 5227
Observations......Page 5228
Models......Page 5229
Discussion......Page 5230
Models......Page 5232
Neptune......Page 5234
Moon......Page 5237
Ganymede......Page 5238
Discussion......Page 5239
References......Page 5240
Relevant Website......Page 5245
Historical Introduction......Page 5246
General Remarks on the Dynamo Theory of Planetary Magnetism......Page 5247
Mathematical Formulation of the Problem of Spherical Dynamos......Page 5248
Convection in Rotating Spherical Shells......Page 5250
Convection-Driven Dynamos......Page 5253
General Considerations......Page 5257
Mercury......Page 5259
Uranus and Neptune......Page 5260
Concluding Remarks......Page 5261
References......Page 5262
Introduction......Page 5264
Interior Structure and Phase Transitions......Page 5265
Accretional heating......Page 5266
Core formation......Page 5267
Rheology......Page 5268
Thermal Expansivity and Conductivity......Page 5269
Planform of Convection......Page 5270
Thermal Evolution Models Using Parametrized Convection......Page 5271
Parametrizations Based on Constant-Viscosity Laws......Page 5272
Stagnant Lid Parametrization Based on Temperature-Dependent Viscosity Laws......Page 5273
Plate Tectonics, Lithosphere Delamination,
and Stagnant Lid Convection......Page 5275
Thermal Evolution, Volcanic History,
and Magnetic Field History of Terrestrial Planets......Page 5277
Primary and secondary crust formation......Page 5278
Plume volcanism and partial melt zone......Page 5279
Observations......Page 5280
Magnetic Field Generation......Page 5281
Chemical dynamo......Page 5282
Mercury......Page 5283
Venus......Page 5287
Moon......Page 5290
Mars......Page 5294
Tidal Heating and the Evolution......Page 5300
Thermal and Orbital Evolution......Page 5302
Summary......Page 5304
References......Page 5306
Atmosphere-Surface Interplay on Solar System Bodies......Page 5314
Physical and Chemical Signs of Surface Rock Alteration......Page 5315
Atmospheric Compositions in the Context of Atmosphere-Surface Interactions......Page 5318
Oxidation on Venus......Page 5320
Oxidation on Mars......Page 5321
Reactions with Sulfur Gases......Page 5322
Reactions with CO2......Page 5324
Reactions with Halogens......Page 5325
Kinetic Aspects of Surface-Gas-Type Reactions......Page 5326
Local Reactions Caused by Impacts and Volcanic Eruptions......Page 5327
Atmosphere-Surface Interactions throughout History......Page 5328
Summary and Unsolved Questions......Page 5329
References......Page 5330
10.11 Water on the Terrestrial Planets......Page 5335
Stability of water and ice......Page 5336
Adsorption......Page 5338
Visual and infrared spectroscopic features of ice and bound water......Page 5339
Gamma-ray and neutron spectroscopy......Page 5340
Morphology......Page 5341
Water on the Surface......Page 5342
Morphology and formation......Page 5343
Source of water and climate......Page 5344
The orbiter view......Page 5345
Morphology......Page 5346
Morphometry/discharge......Page 5348
Models involving oceans......Page 5349
Assessment of geomorphic evidence......Page 5350
Tests of ocean hypotheses......Page 5351
Glacial landforms......Page 5352
Permafrost and ground-ice landforms......Page 5353
Lobate debris aprons, lineated valley fill,
and concentric crater fill......Page 5354
Terrain softening......Page 5355
Patterned ground......Page 5356
Polar Caps......Page 5357
Large Debris Flows......Page 5358
Morphology......Page 5359
Formation......Page 5360
Water in Mantle and Crust......Page 5361
Moon and Mercury......Page 5362
Mars......Page 5363
Mineralogy......Page 5364
Hematite......Page 5365
Sulfates......Page 5366
Geophysical Consequences......Page 5367
Evolution of Water and Climate......Page 5369
Summary and Outlook......Page 5371
References......Page 5372
The Requirements for an Origin of Life and
'Habitability’......Page 5385
The Origin of Life and the First Cells......Page 5386
The Habitability Limits: Physical and Chemical Constraints on Life......Page 5387
Building Cells......Page 5389
Generating Energy......Page 5390
The Growth of Microorganisms......Page 5391
Microorganisms and Mineral Formation......Page 5393
The Earliest Traces of Life......Page 5395
Conclusions for Geology,
Life and Habitability beyond the Earth......Page 5396
References......Page 5397
Introduction......Page 5402
Gravity Fields......Page 5403
Hydrogen and helium......Page 5405
Heavy elements......Page 5406
Energy Balance and Atmospheric Temperature Profiles......Page 5407
Atmospheric Dynamics: Winds and Weather......Page 5408
Extrasolar Planets......Page 5409
High-Pressure Physics and Equations of State......Page 5410
Heat Transport......Page 5412
The Contraction and Cooling Histories of Giant Planets......Page 5413
Mass-Radius Relation......Page 5414
Rotation and the Figures of Planets......Page 5415
Jupiter and Saturn......Page 5416
Uranus and Neptune......Page 5418
Irradiated Giant Planets......Page 5419
Implications for Planetary Formation Models......Page 5422
Future Prospects......Page 5423
References......Page 5424
Introduction......Page 5428
The Earth-Moon System......Page 5430
Mars System......Page 5434
Jupiter System......Page 5436
Minimum Mass Sub-Nebula (MMSN)......Page 5438
Starved Accretion Disk Model......Page 5439
Saturn System......Page 5445
Uranus System......Page 5448
Neptune System......Page 5450
Pluto System......Page 5453
Irregular Satellites......Page 5454
Acknowledgments......Page 5455
Accretion Details......Page 5456
Viscous Spreading......Page 5458
Gas Drag......Page 5459
Thermodynamics......Page 5460
References......Page 5466
Relevant Websites......Page 5471
Introduction......Page 5472
Spectroscopic Constraints on Composition......Page 5473
Elemental Abundance from Density......Page 5474
Sizecomma Shape,
and Mass......Page 5476
Density and Composition......Page 5477
Gravity......Page 5478
Two- and Three-Layer Structural Models......Page 5479
Oceans......Page 5481
Thermal State......Page 5483
Heat Transfer......Page 5484
Effect of Volatiles......Page 5485
Tidal Heating......Page 5486
Heat Balance......Page 5487
Interior Structure of Selected Icy Satellites......Page 5488
Ganymede and Callisto......Page 5489
Europa......Page 5490
Titan......Page 5493
Enceladus......Page 5495
Rhea and Iapetus......Page 5496
Triton......Page 5497
References......Page 5498
The Pluto System......Page 5503
Kuiper Belt......Page 5504
On KBO Nomenclature......Page 5506
Collisions......Page 5507
Albedos......Page 5508
Rotational Properties and Light Curves......Page 5509
Colors......Page 5510
Surface Composition......Page 5512
Atmospheres......Page 5514
Pluto’s atmosphere......Page 5515
Other KBOs......Page 5517
Interior Models......Page 5518
Origin......Page 5519
Goals......Page 5520
Future Ground-Based Observatories......Page 5521
Space Missions to the KB and Centaurs......Page 5522
References......Page 5523
Relevant Websites......Page 5526
Scientific Rationale and Present Status of Planetary Exploration Missions......Page 5527
Leaving the Gravitational Influence of the Earth......Page 5529
Flyby Missions......Page 5532
Rendezvous Missions......Page 5533
Rendezvous missions to comets and Earth-crossing asteroids......Page 5534
Remote-Sensing and In Situ Missions to Venus and Mars......Page 5535
Orbiter Missions Not Implementing Aerocapture......Page 5537
Orbit Evolution around Planetary Bodies......Page 5538
In Situ Missions to Atmosphereless Bodies......Page 5540
Gravity-Assist Missions: Giant Planets, Mercury, Asteroid,
and Comet Rendezvous......Page 5542
Advanced Propulsion Systems: Solar Sail,
Ion Propulsion......Page 5548
Ion Propulsion......Page 5549
The Specific Challenges of Sample Return Missions......Page 5551
References......Page 5554
10.18 Instrumentation for Planetary Exploration Missions......Page 5556
Introduction......Page 5558
Building on Past Missions......Page 5559
Exploration of the Jovian system......Page 5560
Preparation of landing on terrestrial planets......Page 5561
Longer-Term Goals for Exploration......Page 5562
Remote sensing......Page 5563
Active detection......Page 5564
Wide field imager......Page 5565
Panoramic camera......Page 5566
Spectrometer......Page 5567
UV spectrometer......Page 5568
Nephelometer......Page 5569
Alpha particle X-ray spectrometer......Page 5570
Neutron Spectrometer......Page 5571
Laser Altimeter......Page 5572
Synthetic aperture radar......Page 5573
Radio propagation at occultation......Page 5575
Neutral particle analyzer......Page 5576
Quadrupole mass analyzer......Page 5577
Wien filter......Page 5578
Laser-induced breakdown spectroscopy......Page 5579
Mössbauer Spectrometer......Page 5580
Scanning Tunneling and Atomic-Force Microscope......Page 5581
Plasma wave analyzer......Page 5582
Electron drift instrument......Page 5583
Vector helium magnetometer......Page 5584
Accelerometer and Seismometer......Page 5585
Pressure......Page 5586
Surface Dating......Page 5587
Instrument Suites for Exploration......Page 5588
Surface and Subsurface......Page 5589
Subsurface access......Page 5590
Atmospherescomma Exospherescomma and Ionospheres......Page 5591
Aerobots......Page 5592
Magnetosphere......Page 5593
Rings......Page 5594
Asteroids and Comets......Page 5595
Sample Return......Page 5597
Operational aspects......Page 5598
References......Page 5599
Relevant Websites......Page 5602
Cover Page......Page 5603
Title Page......Page 5604
ISBN: 978-0444519283......Page 5605
Contents of All Volumes......Page 5606
Preface......Page 5616
Contributors to All Volumes......Page 5619
Editorial Advisory Board......Page 5631
A......Page 5632
B......Page 5639
C......Page 5643
D......Page 5659
E......Page 5663
F......Page 5681
G......Page 5686
H......Page 5695
I......Page 5700
J......Page 5707
K......Page 5708
L......Page 5709
M......Page 5715
N......Page 5750
O......Page 5755
P......Page 5759
Q......Page 5784
R......Page 5785
S......Page 5794
T......Page 5819
V......Page 5829
W......Page 5834
X......Page 5838
Z......Page 5839