Transport Phenomena in Multiphase Flows

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This textbook provides a thorough presentation of the phenomena related to the transport of mass (with and without electric charge), momentum and energy.  It lays all the basic physical principles, and then for the more advanced readers, it offers an in-depth treatment with advanced mathematical derivations and ends with some useful applications of the models and equations in specific settings.

The important idea behind the book is to unify all types of transport phenomena, describing them within a common framework in terms of cause and effect, respectively, represented by the driving force and the flux of the transported quantity. The approach and presentation are original in that the book starts with a general description of transport processes, providing the macroscopic balance relations of fluid dynamics and heat and mass transfer, before diving into the mathematical realm of continuum mechanics to derive the microscopic governing equations at the microscopic level.

The book is a modular teaching tool and is used either for an introductory or for an advanced graduate course. The last six chapters are of interest to more advanced researchers who might be interested in applications in physics, mechanical engineering or biomedical engineering. In particular, this second edition of the book includes two chapters about electric migration, that is the transport of mass that takes place in a mixture under the action of electro-magnetic fields. Electric migration finds many applications in the modeling of energy storage devices, such as batteries and fuel cells.

All chapters are complemented with solved exercises that are essential to complete the learning process. 

 


Author(s): Roberto Mauri
Series: Fluid Mechanics and Its Applications, 112
Edition: 2
Publisher: Springer
Year: 2023

Language: English
Pages: 463
City: Cham

Preface to the Second Edition
Preface to the First Edition
Acknowledgements
Contents
1 Thermodynamics and Evolution
1.1 Introduction
1.2 Local Equilibrium
1.3 Introduction to Continuum Mechanics
1.4 Convection and Diffusion
1.5 Viscosity
1.6 Thermal Conductivity
1.7 Molecular Diffusivity
1.8 Molecular Diffusion as an Example of Random Walk
1.9 Examples of Diffusive Processes
1.10 Problems
2 Statics of Fluids
2.1 Hydrostatic Equilibrium
2.2 Manometers
2.3 Surface Tension
2.4 The Young–Laplace Equation
2.5 Contact Angle
2.6 Problems
3 General Features of Fluid Mechanics
3.1 Introduction
3.2 The Reynolds Number
3.3 Boundary Layer and Viscous Resistance
3.4 Boundary Conditions
3.5 Turbulence
3.6 Problems
4 Macroscopic Balances
4.1 Mass Balance and Continuity Equation
4.2 Mechanical Energy Balance and Bernoulli’s Equation
4.3 Momentum Balance
4.4 Recapitulation of the Bernoulli Equation
4.5 Pressure Drops in Pipe Flow
4.6 Localized Pressure Drops
4.7 Flow Around a Submerged Object
4.8 Problems
5 Laminar Flow Fields
5.1 Fully Developed Flow of a Newtonian Fluid in a Pipe
5.2 Fluid Rheology
5.3 Flow of Non-Newtonian Fluids in Circular Pipes
5.4 Flow in Porous Media
5.5 Quasi-Steady Flow
5.6 Capillary Flow
5.7 Problems
6 The Governing Equations of a Simple Fluid
6.1 General Microscopic Balance Equation
6.2 Mass Balance: The Continuity Equation
6.3 Momentum Balance: Cauchy’s Equation
6.4 Angular Momentum Balance
6.5 The Constitutive Equation for Newtonian Fluids
6.6 Energy Balance
6.7 Governing Equations for Incompressible Newtonian Fluids
6.8 The Entropy Equation
7 Laminar Unidirectional Flows
7.1 Flow in Pipes and Channels
7.2 Parallel Plates Viscometer
7.3 Radial Flux Between Two Parallel Disks
7.4 Fluid Flow Due to the Rapid Movement of a Wall
7.5 Lubrication Approximation
7.6 Drainage of a Liquid Film from a Vertical Plate
7.7 Integral Methods
7.8 Problems
8 Laminar Boundary Layer
8.1 Scaling of the Problem
8.2 Blasius Self-similar Solution
8.3 Flow Separation
8.4 von Karman-Pohlhausen Method
8.5 Problems
9 Heat Conduction
9.1 Introduction to Heat Transport
9.2 Unidirectional Heat Conduction
9.3 The Composite Solid
9.4 Quasi-Steady State Approximation
9.5 Problems
10 Conduction with Heat Sources
10.1 Uniform Heat Generation
10.2 Heat Conduction with Chemical Reaction
10.3 Regular Asymptotic Expansion for Small Da
10.4 Singular Asymptotic Expansion for Large Da
10.5 Problems
11 Macroscopic Energy Balance
11.1 Introduction
11.2 The Heat Transfer Coefficient
11.3 Heat Exchangers
11.4 Heat Exchanging Fins
11.5 Problems
12 Time-Dependent Heat Conduction
12.1 Heat Balance Equation
12.2 Heat Conduction in a Semi-infinite Slab
12.3 Temperature Field Generated by a Heat Pulse
12.4 Heat Conduction in a Finite Slab
12.5 Heat Exchange in a Pipe
12.6 Heat Transfer Coefficient in Laminar Flow
12.7 Problems
13 Convective Heat Transport
13.1 Dimensional Analysis of the Problem
13.2 Laminar Thermal Boundary Layer
13.3 Colburn-Chilton Analogy
13.4 The Relation Between δe δT
13.5 Problems
14 Constitutive Equations for Transport of Chemical Species
14.1 Fluxes and Velocities
14.2 Material Balance Equations
14.3 The Constitutive Equations of the Material Fluxes
14.4 Boundary Conditions
14.5 Answers to Some Questions on Material Transport
15 Stationary Material Transport
15.1 Diffusion Through a Stagnant Film
15.2 Diffusion with Heterogeneous Chemical Reaction
15.3 Diffusion with Homogeneous, First-Order Chemical Reaction
15.4 Diffusion with Homogeneous, Second-Order Chemical Reaction
15.5 Problems
16 Non-stationary Material Transport
16.1 Transport Across a Membrane
16.2 Evaporation of a Liquid from a Reservoir
16.3 Slow Combustion of a Coal Particle
16.4 Unsteady Evaporation
16.5 Problems
17 Convective Material Transport
17.1 Mass Transport Through a Fixed Bed
17.2 Laminar Material Boundary Layer
17.3 Mass Boundary Layer for Small Reynolds Number
17.4 Integral Methods
17.5 Quasi Steady State (QSS) Approximation
17.6 Problems
18 Transport Phenomena in Turbulent Flows
18.1 Fundamental Characteristics of Turbulence
18.2 Time- and Length-Scales in Turbulence
18.3 Reynolds-Averaged Equations
18.4 Turbulent Diffusion
18.5 Logarithmic Velocity Profile
18.6 More Complex Models
19 Free Convection
19.1 The Boussinesq Approximation
19.2 Free Convection in a Vertical Channel
19.3 Dimensional Analysis
19.4 The Boundary Layer in Free Convection
19.5 Experimental Correlations
19.6 Heat Transfer with Phase Transition
19.7 Problems
20 Radiant Heat Transfer
20.1 The Law of Stefan-Boltzmann
20.2 Emissivity and Absorptance
20.3 Radiation and Conduction
20.4 Example: The Design of a Solar Panel
20.5 Problems
20.6 Appendix: The Quantum Theory
21 Antidiffusion
21.1 The Chemical Potential
21.2 Chemical Stability
21.3 The Critical Point
21.4 Example: Binary Symmetric Mixtures
21.5 Molecular Diffusion in Binary Symmetric Mixtures
21.6 Non-symmetric Mixtures
21.7 Osmotic Flow
22 Stationary Diffusion
22.1 Harmonic Functions
22.2 Creeping Flow
23 Transport of Electric Charges in Electrolytes
23.1 Thermodynamics of a Mixture with an External Force
23.2 Transport of Electric Charges in Electrolyte Solutions
23.3 Binary Electrolyte Solutions
Appendix A Properties of Pure Components at 1 atm
Appendix B Viscosity and Surface Tension of Selected Fluids
Appendix C Conversion Factors
Appendix D Governing Equations
D.1 Cartesian Coordinates x, y, z
D.2 Cylindrical Coordinates r, ϕ, z
D.3 Spherical Coordinates r, θ, ϕ
Appendix E The Balance Equations (Eulerian Approach)
E.1 Conservation of Mass (For One-Phase, One-Component Fluid)
E.2 Conservation of Momentum (For Newtonian Incompressible Fluids)
E.3 Conservation of Energy (Heat Equation for Incompressible Fluids)
E.4 Conservation of Chemical Species (For Incompressible Fluids with Constant Total Concentration)
Appendix F Introduction to Linear Algebra
F.1 Tensor and Vector Representation
F.2 Vector Differential Operators
F.3 Integral Theorems
Solutions of the Problems
Background Reading
Subject Index