Transforming the Grid Towards Fully Renewable Energy

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

The need for a deep decarbonization of the energy sector and the associated opportunities are now increasingly recognized, with fossil fuel projects simultaneously becoming more risky business propositions. With large-scale wind and solar generation now being the cheapest options in many parts of the world, a deeply renewable electricity sector is predestined to become the main driver of this transition. Yet, misconceptions abound. In part, this can be traced back to the complexity of the electricity sector and the processes involved in its transformation, located at the intersection between grid design and operation, markets and regulations.

This book is intended to provide some clarity in this matter, by taking the reader from the conceptual foundations of a deeply decarbonized electricity sector in part 1 to new strategies for the renewable energy transition in part 3. Insights into essential building blocks are provided in part 2 where the role of transmission, distributed generation, smart grids, demand response, storage, and forecasting are covered in some detail. The synthesis part 3 explores the connections between the mobility and electricity sectors, the design of renewable economies, and possible roadmaps for a world-wide transition to a deeply decarbonized economy.

While striving to be technically rigorous, this book is also meant as an entertaining and inspiring read for researchers and advanced students, experts with the electric power industry, and decision makers in politics, industry and finance.

Author(s): Oliver Probst , Sergio Castellanos, Rodrigo Palacios
Series: IET Enigneering Series, 159
Publisher: Institution of Engineering & Technology
Year: 2020

Language: English
Pages: 424
City: London

Cover
Contents
About the editors
Preface
Part I. Problem statement and potentials
1 A clean electricity sector as a major driver of a sustainable economy
1.1 Sustainability and the eternal growth paradigm
1.2 A road map toward sustainability
1.2.1 Curbing natural resource consumption
1.2.2 Electrification of energy services
1.2.3 Deep decarbonization
1.3 The electric grid in the renewable energy era
1.3.1 Large-scale transmission revisited
1.3.2 Distributed generation: moving out of the niche
1.3.3 Storage: the main driver or a nice-to-have?
1.3.4 Forecasting—beyond the crystal ball
1.3.5 Smart grids, demand control, and energy efficiency
1.3.5.1 What can smart grids do for you?
1.3.5.2 Demand control and demand-side management
1.4 Markets and regulations
1.4.1 Regulations: the importance of a long-term vision
1.4.2 How can markets help renewables?
1.5 Taming the beast: toward a concept of mobility
1.6 Where we go from here? The clean energy transition as the litmus test of human maturity
References
2 Towards an electricity sector with 100% renewable energy generation
2.1 Introduction
2.2 Progress in countries, states and cities
2.3 Scenario and simulation modelling: refuting the myths
2.3.1 Scenario and simulation modelling
2.3.2 Reliability
2.3.3 Security
2.3.4 System cost
2.3.5 Timescale of transition
2.4 Conclusion
References
3 Sustainability perils and opportunities of clean electricity
3.1 Why the pivotal role of electricity in climate protection?
3.2 Environmental impacts of electricity generation
3.2.1 Climate action (SDG13)
3.2.2 Good health and well-being (SDG3)
3.2.3 Life below water (SDG14) and life on land (SDG15)
3.2.4 Affordable and clean energy (SDG7) and responsible consumption and production (SDG12)
3.3 Concluding remarks
Acknowledgement
Appendix A
References
Part II. Tools for renewable energy grid integration
4 The role of transmission for renewable energy integration and clean exports
4.1 Introduction
4.1.1 Background
4.1.2 Modelling flexibility: time and spatial dimensions
4.1.3 Related literature on the value of transmission
4.2 Modelling large-scale energy systems
4.2.1 The EMPIRE model
4.2.1.1 Mathematical formulation
4.2.1.2 Model constraints
4.2.2 Analysing gas network flows: The Global Gas Model
4.3 Large-scale RES share scenarios in Europe
4.3.1 Baseline scenario of a low-carbon European power system
4.3.1.1 Data sources
4.3.1.2 EMPIRE results from the Baseline and NoCCS scenarios
4.3.2 A deeper look at the role of transmission in decarbonization
4.4 Clean energy exports in 2050 scenarios: the case of Norway
4.4.1 Norway power system perspective in 2050
4.4.2 Natural gas infrastructure in the energy transition
4.4.3 RES fluctuations and natural gas capacity (utilization) factor
4.5 Conclusions and highlights
Acknowledgements
References
5 Integrating renewable energy into the distribution grid: general aspects and the case of Mexico
5.1 Origins, benefits, and challenges of DG
5.2 Overview of DG internationally
5.3 DG in the Mexican electric sector
5.4 The Mexican power sector
5.4.1 The changes within the Mexican power industry law
5.4.2 Regulation of DG
5.5 The evolution of DG in Mexico
5.5.1 DG by the numbers
5.5.2 Barriers for financing and installing DG systems
5.5.3 Mechanisms for the implementation of DG
5.5.3.1 Solar Homes
5.5.3.2 CSolar
5.6 Prospects for future growth DG in Mexico
5.6.1 Forecast for DG development
5.6.2 A new proposal
5.7 Conclusions
References
6 The role of smart grids for the renewable energy transition
6.1 Introduction
6.2 Power balance
6.2.1 Timescales
6.2.2 The role of inverters
6.3 Transmission constraints
6.3.1 Thermal and stability limits
6.3.2 Oscillations
6.3.3 HVDC
6.3.4 Flexible a.c. transmission systems
6.4 Voltage management
6.5 Protection
6.5.1 Smart protection
6.6 Integration and coordination
6.6.1 Communications
6.6.2 Internet of Things
6.6.3 Smart aggregation
6.6.4 Situational awareness
6.6.5 Grid data
6.7 Economic considerations
References
7 Demand response technologies in buildings for curbing and shifting electric loads
7.1 Introduction
7.1.1 Background
7.2 Coordination of DR with energy efficiency
7.3 Building characteristics
7.3.1 Residential buildings
Thermal comfort and DR
7.3.2 Commercial buildings
7.4 Behavioral DR
7.5 DR and renewable energy
7.6 Conclusion
References
8 Storage regulations and technologies
8.1 Grid services provided by storage
8.1.1 Overview: energy vs. power services, grid vs. user services
8.1.2 Grid services
8.1.2.1 Energy arbitrage
8.1.2.2 Primary frequency regulation and inertia replacement
8.1.2.3 Secondary frequency regulation
8.1.2.4 Flexible demand control
8.1.3 User services
8.1.3.1 Load shifting for users with hourly tariffs
8.1.3.2 Reduction of demand charges
8.1.3.3 Increasing of self-supply levels
8.1.3.4 Black start of internal grids
8.2 Regulations for storage in different jurisdictions
8.2.1 Portfolio standards
8.2.2 Procurement standards
8.2.3 US market regulations
8.2.3.1 Utility-scale regulation change: fast-response frequency regulation
8.2.3.2 Residential-scale regulation change: HECO smart export program
8.2.3.3 Other incentive examples
8.2.3.4 Accelerated depreciation regulation
8.2.3.5 Local incentives
8.3 Technologies
8.3.1 Mechanical
8.3.1.1 Pumped hydro storage
8.3.1.2 Compressed-air energy storage
8.3.1.3 Flywheels
8.3.1.4 Gravity-based storage technologies
8.3.2 Chemical storage
8.3.2.1 Hydrogen
8.3.2.2 Power-to-X
8.3.3 Electrochemical
8.3.3.1 Lithium-ion systems
8.3.3.2 Lead-acid systems
8.3.3.3 NaS systems
8.3.3.4 Flow systems
8.3.4 Thermal
8.4 Conclusions
References
9 Forecasting of renewable energy generation for grid integration
9.1 Introduction
9.1.1 The case of Mexico
9.1.2 Forecasting as a cost-effective flexibility resource
9.2 Power systems
9.3 Power forecasting
9.3.1 Deterministic/probabilistic forecasts
9.3.2 Stochastic approaches
9.3.2.1 Statistical methods
9.3.2.2 Artificial intelligence
9.3.3 Physical approaches
9.3.3.1 Numerical weather prediction
9.3.3.2 Ensembles
9.3.3.3 On-site instrumentation
9.3.4 Hybrid methods
9.4 Forecasting evaluation
9.5 Economical impact of power forecasting
9.6 Conclusions
References
Part III. Strategies for the clean energy transition
10 The role of regulations for providing certainty to the energy reform and transition in Mexico
10.1 Regulatory reform principles
10.1.1 What is a regulatory reform?
10.2 Characteristics of the regulatory reform
10.2.1 Move to markets: liberalization
10.2.2 Independent regulatory agencies
10.2.3 New regulatory process
10.3 Forces for regulatory change
10.4 Analysis of the forces for change in the Mexican electricity industry
10.4.1 Forces for change: technology
10.4.2 Forces for change: decentralization of the electricity sector
10.5 The strength of the forces for change
10.6 The constitutional reform of the electricity industry in Mexico: the fall of a regulatory Chinese wall
10.7 The progress of electric decentralization in Mexico
10.7.1 Liberalization of electricity generation and supply
10.7.2 The emergence of the distributed schemes in Mexico
10.7.2.1 Distributed generation
10.7.2.2 Isolated supply
10.7.2.3 Controllable demand
10.7.3 Distributed generation: the blurring of a natural monopoly assumption
10.7.4 An independent regulatory agency: the CRE
10.7.5 The re-regulatory process: liberalized activities and its new rules
10.8 Conclusions
References
11 Effective market design for high-renewable penetration
11.1 The organization of the electricity sector
11.1.1 Transmission operations
11.1.2 Generation ownership
11.1.3 Restructuring and reform of retail services
11.1.4 Restructuring and distributed generation
11.2 Policies driving renewable electricity
11.3 The challenges of high-renewable penetration
11.3.1 Short-term market operations
11.3.1.1 Implications of renewables for short-term pricing
11.3.2 Long-term market (investment) challenges
11.3.2.1 Renewables and capacity markets
11.3.2.2 Renewables and capacity performance
11.3.2.3 Capacity instruments and performance incentives
11.4 Conclusions
References
12 Regulating the interdependencies of the mobility and electricity sectors
12.1 Introduction
12.2 Description of transformations in the mobility sector
12.2.1 Technology in transportation
12.2.2 Institutions in transportation
12.3 Description of transformations in the electricity sector
12.3.1 Technology in electricity
12.3.2 Institutions in electricity
12.4 Drivers of the mobility and energy transformations
12.4.1 Deregulation
12.4.2 Digitalization
12.4.3 Decarbonization
12.5 Toward sector convergence and sector coupling?
12.6 Discussion
References
13 Building renewable economies that maximize social welfare and innovation
13.1 Introduction
13.1.1 The urgency of climate change
13.1.2 The growing clean energy market
13.1.3 Framing clean energy as an economic opportunity
13.1.4 Renewables and social welfare
13.1.5 Economic clusters
13.2 Local market
13.2.1 Feed in tariffs: standard offer contracts to encourage technological growth
13.2.2 Net metering: increasing financial incentives for solar PV investment
13.2.3 Codes/standards to save energy in buildings and appliances
13.3 Value chain
13.3.1 Port innovation districts: clustering firms and research
13.4 Workforce development
13.4.1 Fostering apprenticeships through support and incentives
13.4.2 Stackable credentials: a career ladder for middle-skill clean energy jobs
13.5 Access to capital and end-user finance
13.5.1 Loan guarantees: bridging the valley of death for renewable energy technologies
13.5.2 Brief case study: addressing challenges with market entry: Maryland’s Offshore Wind Business Development Grant Program
13.5.3 Opening end-user markets to distributed technology
13.6 Innovation ecosystem
13.7 Conclusion
References
14 Challenges ahead for a clean energy transition worldwide
14.1 Introduction
14.2 Decarbonization pathways
14.3 The role of financing in transitions for decarbonization
14.4 The electricity grid
14.4.1 Nuclear energy
14.4.2 Energy efficiency
14.5 Transportation
14.6 Other energy-intensive sectors and end uses
14.6.1 Industry: steel and cement
14.6.2 Data and digitalization
14.7 Articulating a human-centered approach
14.8 Closing remarks
References
Index
Back Cover