TRANSFORMER AND INDUCTOR DESIGN HANDBOOK......Page 1
FOREWORD......Page 8
PREFACE......Page 9
ACKNOWLEDGMENTS......Page 10
ABOUT THE AUTHOR......Page 11
SYMBOLS......Page 14
CONTENTS......Page 12
CHAPTER 1: FUNDAMENTALS OF MAGNETICS......Page 20
2. MAGNETIC PROPERTIES IN FREE SPACE......Page 21
3. INTENSIFYING THE MAGNETIC FIELD......Page 22
4. SIMPLE TRANSFORMER......Page 25
5. MAGNETIC CORE......Page 26
6. FUNDAMENTAL CHARACTERISTICS OF A MAGNETIC CORE......Page 27
7. HYSTERESIS LOOP (B-H LOOP)......Page 29
8. PERMEABILITY......Page 30
9. MAGNETOMOTIVE FORCE (MMF) AND MAGNETIZING FORCE (H)......Page 33
10. RELUCTANCE......Page 34
11. AIR GAP......Page 36
12. CONTROLLING THE DC FLUX WITH AN AIR GAP......Page 38
13. TYPES OF AIR GAPS......Page 39
14. FRINGING FLUX......Page 40
16. AIR GAPS......Page 41
17. FRINGING FLUX, F......Page 42
18. GAPPED, DC INDUCTOR DESIGN......Page 43
20. FRINGING FLUX, CROWDING......Page 45
21. FRINGING FLUX AND POWDER CORES......Page 46
CHAPTER 2: MAGNETIC MATERIALS AND THEIR CHARACTERISTICS......Page 48
2. SATURATION......Page 49
5. HYSTERESIS LOSS, RESISTIVITY, P, (CORE LOSS)......Page 50
7. INTRODUCTION TO THIN TAPE NICKEL ALLOYS......Page 51
8. INTRODUCTION TO METALLIC GLASS......Page 55
9. INTRODUCTION TO SOFT FERRITES......Page 59
11. NICKEL-ZINC FERRITES......Page 60
12. FERRITE CROSS REFERENCE......Page 63
14. INTRODUCTION TO IRON POWDER CORES......Page 64
15. CORE LOSS......Page 71
16. CORE LOSS EQUATIONS......Page 72
18. TYPICAL OPERATION......Page 75
19. MATERIAL CHARACTERISTICS......Page 76
20. MAGNETIC MATERIAL SATURATION DEFINED......Page 79
21. TEST CONDITIONS......Page 82
22. MAGNETIC MATERIAL SATURATION THEORY......Page 87
24. EFFECT OF GAPPING......Page 88
25. COMPOSITE CORE CONFIGURATION......Page 96
26. SUMMARY......Page 99
CHAPTER 3: MAGNETIC CORES......Page 101
INTRODUCTION......Page 104
CORE TYPE AND SHELL TYPE CONSTRUCTION......Page 105
EDDY CURRENTS AND INSULATION......Page 106
LAMINATIONS......Page 108
STACKING LAMINATIONS AND POLARITY......Page 109
FLUX CROWDING......Page 110
EXCITING CURRENT......Page 111
TAPE WOUND C, EE, AND TOROIDAL CORES......Page 113
TAPE TOROIDAL CORES......Page 114
STACKING FACTORS......Page 115
DESIGN AND DIMENSIONAL DATA FOR EL LAMINATIONS......Page 116
DESIGN AND DIMENSIONAL DATA FOR UI LAMINATIONS......Page 117
DESIGN AND DIMENSIONAL DATA FOR LL LAMINATIONS......Page 118
DESIGN AND DIMENSIONAL DATA FOR DU LAMINATIONS......Page 119
DESIGN AND DIMENSIONAL DATA FOR THREE PHASE LAMINATIONS......Page 120
DESIGN AND DIMENSIONAL DATA FOR TAPE WOUND C CORES......Page 121
DIMENSIONAL OUTLINE FOR TAPE WOUND EE CORES......Page 122
DESIGN AND DIMENSIONAL DATA FOR TAPE WOUND TOROIDAL CORES......Page 123
DESIGN AND DIMENSIONAL DATA FOR EE FERRITE CORES......Page 124
DESIGN AND DIMENSIONAL DATA FOR EE AND EL PLANAR, FERRITE CORES......Page 125
DESIGN AND DIMENSIONAL DATA FOR EC, FERRITE CORES......Page 126
DESIGN AND DIMENSIONAL DATA FOR ETD, FERRITE CORES......Page 127
DESIGN AND DIMENSIONAL DATA FOR ETD/(LOW PROFILE), FERRITE CORES......Page 128
DESIGN AND DIMENSIONAL DATA FOR ER, FERRITE CORES......Page 129
DESIGN AND DIMENSIONAL DATA FOR EFD, FERRITE CORES......Page 130
DESIGN AND DIMENSIONAL DATA FOR EPC, FERRITE CORES......Page 131
DESIGN AND DIMENSIONAL DATA FOR PC, FERRITE CORES......Page 132
DESIGN AND DIMENSIONAL DATA FOR EP, FERRITE CORES......Page 133
DESIGN AND DIMENSIONAL DATA FOR PQ, FERRITE CORES......Page 134
DESIGN AND DIMENSIONAL DATA FOR PQ/(LOW PROFILE), FERRITE CORES......Page 135
DESIGN AND DIMENSIONAL DATA FOR RM, FERRITE CORES......Page 136
DESIGN AND DIMENSIONAL DATA FOR RM/(LOW PROFILE), FERRITE CORES......Page 137
DESIGN AND DIMENSIONAL DATA FOR DS, FERRITE CORES......Page 138
DESIGN AND DIMENSIONAL DATA FOR UUR, FERRITE CORES......Page 139
DESIGN AND DIMENSIONAL DATA FOR UUS, FERRITE CORES......Page 140
DESIGN AND DIMENSIONAL DATA FOR TOROIDAL, FERRITE CORES......Page 141
DESIGN AND DIMENSIONAL DATA FOR TOROIDAL, MPP POWDER CORES......Page 142
DESIGN AND DIMENSIONAL DATA FOR TOROIDAL, IRON POWDER CORES......Page 143
DESIGN AND DIMENSIONAL DATA FOR TOROIDAL, SENDUST POWDER CORES......Page 144
DESIGN AND DIMENSIONAL DATA FOR TOROIDAL, HIGH FLUX POWDER CORES......Page 145
DESIGN AND DIMENSIONAL DATA FOR EE, IRON POWDER CORES......Page 146
DESIGN AND DIMENSIONAL DATA FOR EE, SENDUST POWDER CORES......Page 147
REFERENCES......Page 148
CHAPTER 4: WINDOW UTILIZATION, MAGNET WIRE, AND INSULATION......Page 149
WINDOW UTILIZATION FACTOR, KU......Page 151
SI, WIRE INSULATION......Page 152
S2, FILL FACTOR......Page 153
S3, EFFECTIVE WINDOW......Page 156
S4, INSULATION FACTOR......Page 159
WINDOW UTILIZATION FACTOR, KU FOR BOBBIN FERRITES......Page 160
CIRCULAR MIL AND SQUARE MIL......Page 161
MAGNET WIRE......Page 162
MAGNET WIRE, FILM INSULATION......Page 163
SOLDERABLE INSULATION......Page 166
BASE FILM INSULATION......Page 167
MINIATURE SQUARE MAGNET WIRE......Page 168
MULTISTRAND WIRE AND SKIN EFFECT......Page 169
REDUCE SKIN EFFECT IN TRANSFORMERS......Page 170
CALCULATING SKIN EFFECT IN INDUCTORS......Page 171
MULTISTRAND LITZ WIRE......Page 174
PROXIMITY EFFECT......Page 175
MULTIPLE LAYER HIGH FREQUENCY TRANSFORMERS AND HIGH LOSS......Page 176
PROXIMITY EFFECT USING DOWELL CURVES......Page 178
TRIPLE INSULATED WIRE......Page 180
TRIPLE INSULATED LITZ......Page 181
POLYFILAR MAGNETIC WIRE......Page 182
STANDARD FOILS......Page 183
THE USE OF FOILS......Page 184
CALCULATING, MLT (TOROID)......Page 187
ELECTRICAL INSULATING MATERIALS......Page 188
REFERENCES......Page 189
CHAPTER 5: TRANSFORMER DESIGN TRADE-OFFS......Page 190
THE DESIGN PROBLEM GENERALLY......Page 192
RELATIONSHIP, AP, TO TRANSFORMER POWER HANDLING CAPABILITY......Page 193
RELATIONSHIP, KG, TO TRANSFORMER REGULATION AND POWER HANDLING CAPABILITY......Page 194
TRANSFORMER VOLUME AND THE AREA PRODUCT, AP......Page 195
TRANSFORMER WEIGHT AND THE AREA PRODUCT, AP......Page 198
TRANSFORMER SURFACE AREA AND THE AREA PRODUCT, AP......Page 200
TRANSFORMER CURRENT DENSITY, J, AND THE AREA PRODUCT, AP......Page 203
TRANSFORMER CORE GEOMETRY, KG, AND THE AREA PRODUCT, AP......Page 206
REFERENCES......Page 209
CHAPTER 6: TRANSFORMER-INDUCTOR EFFICIENCY, REGULATION, AND TEMPERATURE RISE......Page 211
MAXIMUM EFFICIENCY......Page 213
TRANSFORMER DISSIPATION, BY RADIATION AND CONVECTION......Page 215
TEMPERATURE RISE VERSUS SURFACE AREA, AT, DISSIPATION......Page 216
SURFACE AREA, AT, REQUIRED FOR HEAT DISSIPATION......Page 217
REQUIRED SURFACE AREA, AT......Page 218
REGULATION AS A FUNCTION OF EFFICIENCY......Page 219
REFERENCES......Page 221
CHAPTER 7: POWER TRANSFORMER DESIGN......Page 222
THE DESIGN PROBLEM GENERALLY......Page 224
POWER-HANDLING ABILITY......Page 225
OUTPUT POWER, P0, VERSUS APPARENT POWER, PT, CAPABILITY......Page 226
TRANSFORMERS WITH MULTIPLE OUTPUTS......Page 229
REGULATION......Page 231
RELATIONSHIP, KG, TO POWER TRANSFORMER REGULATION CAPABILITY......Page 233
DIFFERENT CORES SAME AREA PRODUCT......Page 234
250 WATT ISOLATION TRANSFORMER DESIGN, USING THE CORE GEOMETRY, KG, APPROACH......Page 236
38 WATT 100KHZ TRANSFORMER DESIGN, USING THE CORE GEOMETRY, KG, APPROACH......Page 242
CHAPTER 8: DC INDUCTOR DESIGN USING GAPPED CORES......Page 252
CRITICAL INDUCTANCE FOR SINE WAVE RECTIFICATION......Page 254
CRITICAL INDUCTANCE FOR BUCK TYPE CONVERTERS......Page 256
CORE MATERIALS, USED IN PWM CONVERTERS......Page 258
FUNDAMENTAL CONSIDERATIONS......Page 260
FRINGING FLUX......Page 261
INDUCTORS......Page 263
RELATIONSHIP OF, KG, TO INDUCTOR'S ENERGY-HANDLING CAPABILITY......Page 264
GAPPED INDUCTOR DESIGN EXAMPLE USING THE CORE GEOMETRY, KG, APPROACH......Page 265
GAPPED INDUCTOR DESIGN EXAMPLE USING THE AREA PRODUCT, AP, APPROACH......Page 271
CHAPTER 9: DC INDUCTOR DESIGN USING POWDER CORES......Page 277
HIGH FLUX POWDER CORES (HF)......Page 279
IRON POWDER CORES......Page 280
RELATIONSHIP OF, KG, TO INDUCTOR'S ENERGY-HANDLING CAPABILITY......Page 281
FUNDAMENTAL CONSIDERATIONS......Page 282
TOROIDAL POWDER CORE DESIGN USING THE CORE GEOMETRY, KG, APPROACH......Page 285
TOROIDAL POWDER CORE INDUCTOR DESIGN, USING THE AREA PRODUCT, AP, APPROACH......Page 290
CHAPTER 10: AC INDUCTOR DESIGN......Page 296
RELATIONSHIP OF, AP, TO THE INDUCTOR VOLT-AMP CAPABILITY......Page 298
FUNDAMENTAL CONSIDERATIONS......Page 299
FRINGING FLUX......Page 300
AC INDUCTOR DESIGN EXAMPLE......Page 304
REFERENCE......Page 308
CHAPTER 11: CONSTANT VOLTAGE TRANSFORMER (CVT)......Page 309
CONSTANT-VOLTAGE TRANSFORMER, REGULATING CHARACTERISTICS......Page 311
ELECTRICAL PARAMETERS OF A CVT LINE REGULATOR......Page 312
CONSTANT-VOLTAGE TRANSFORMER, DESIGN EQUATIONS......Page 313
CONSTANT- VOLTAGE TRANSFORMER, DESIGN EXAMPLE......Page 316
SERIES AC INDUCTOR, DESIGN EXAMPLE......Page 323
REFERENCES......Page 328
CHAPTER 12: THREE-PHASE TRANSFORMER DESIGN......Page 329
PRIMARY CIRCUIT......Page 331
COMPARING TRANSFORMER, PHYSICAL SIZE......Page 332
PHASE VOLTAGE, LINE VOLTAGE, AND CURRENT IN A WYE SYSTEM......Page 334
COMPARING MULTIPHASE AND SINGLE-PHASE POWER......Page 335
MULTIPHASE RECTIFIER CIRCUITS......Page 336
AREA PRODUCT, AP, AND CORE GEOMETRY, KG, FOR THREE-PHASE TRANSFORMERS......Page 338
OUTPUT POWER VERSUS APPARENT POWER, PT, CAPABILITY......Page 339
RELATIONSHIP, KG, TO POWER TRANSFORMER REGULATION CAPABILITY......Page 340
THREE-PHASE TRANSFORMER, DESIGN EXAMPLE......Page 341
CHAPTER 13: FLYBACK CONVERTER, TRANSFORMER DESIGN......Page 347
ENERGY TRANSFER......Page 349
CONTINUOUS AND DISCONTINUOUS BOUNDARY......Page 350
DISCONTINUOUS CURRENT BUCK CONVERTER DESIGN EQUATIONS......Page 351
CONTINUOUS CURRENT BUCK CONVERTER DESIGN EQUATIONS......Page 352
THE BOOST CONVERTER......Page 353
DISCONTINUOUS CURRENT BOOST CONVERTER DESIGN EQUATIONS......Page 354
CONTINUOUS CURRENT BOOST CONVERTER DESIGN EQUATIONS......Page 355
DISCONTINUOUS CURRENT INVERTING, BUCK-BOOST DESIGN EQUATIONS......Page 356
CONTINUOUS CURRENT INVERTING, BUCK-BOOST DESIGN EQUATIONS......Page 357
THE ISOLATED BUCK-BOOST CONVERTER......Page 358
DISCONTINUOUS CURRENT ISOLATED, BUCK-BOOST DESIGN EQUATIONS......Page 359
CONTINUOUS CURRENT ISOLATED, BUCK-BOOST DESIGN EQUATIONS......Page 360
DESIGN EXAMPLE, BUCK-BOOST ISOLATED CONVERTER DISCONTINUOUS CURRENT......Page 362
DESIGN EXAMPLE, BOOST CONVERTER, DISCONTINUOUS CURRENT......Page 374
DESIGNING BOOST INDUCTORS FOR POWER FACTOR CORRECTION (PFC)......Page 382
BOOST PFC CONVERTER......Page 383
DESIGN EXAMPLE, (PFC) BOOST CONVERTER, CONTINUOUS CURRENT......Page 384
SKIN EFFECT......Page 385
REFERENCES......Page 391
CHAPTER 14: FORWARD CONVERTER, TRANSFORMER DESIGN, AND OUTPUT INDUCTOR DESIGN......Page 392
CIRCUIT OPERATION......Page 394
COMPARING THE DYNAMIC B-H LOOPS......Page 395
FORWARD CONVERTER WAVEFORMS......Page 396
TRANSFORMER DESIGN USING THE CORE GEOMETRY, KG, APPROACH......Page 398
FORWARD CONVERTER OUTPUT INDUCTOR DESIGN......Page 407
OUTPUT INDUCTOR DESIGN USING THE CORE GEOMETRY, KG, APPROACH......Page 409
CHAPTER 15: INPUT FILTER DESIGN......Page 417
CAPACITOR......Page 419
OSCILLATION......Page 421
APPLYING POWER......Page 422
RESONANT CHARGE......Page 424
INPUT FILTER INDUCTOR DESIGN PROCEDURE......Page 425
INPUT FILTER DESIGN SPECIFICATION......Page 427
REFERENCES......Page 432
CHAPTER 16: CURRENT TRANSFORMER DESIGN......Page 433
INTRODUCTION......Page 435
ANALYSIS OF THE INPUT CURRENT COMPONENT......Page 436
UNIQUE TO A CURRENT TRANSFORMER......Page 437
CURRENT TRANSFORMER CIRCUIT APPLICATIONS......Page 439
CURRENT TRANSFORMER DESIGN EXAMPLE......Page 441
DESIGN PERFORMANCE......Page 445
CHAPTER 17: WINDING CAPACITANCE AND LEAKAGE INDUCTANCE......Page 446
PARASITIC EFFECTS......Page 448
LEAKAGE FLUX......Page 449
MINIMIZING LEAKAGE INDUCTANCE......Page 452
WINDING CAPACITANCE......Page 453
WINDING CAPACITANCE LAYER-TO-LAYER......Page 455
CAPACITANCE WINDING-TO-WINDING......Page 456
STRAY CAPACITANCE......Page 457
REFERENCES......Page 459
CHAPTER 18: QUIET CONVERTER DESIGN......Page 460
THE VOLTAGE-FED CONVERTER......Page 462
REGULATING AND FILTERING......Page 463
THE QUIET CONVERTER......Page 464
QUIET CONVERTER WAVEFORMS......Page 465
WINDOW UTILIZATION FACTOR, KU......Page 469
CALCULATING THE APPARENT POWER, PT......Page 470
QUIET CONVERTER DESIGN EQUATIONS......Page 471
TRANSFORMER DESIGN, USING THE CORE GEOMETRY, KG, APPROACH......Page 475
DESIGN REVIEW......Page 480
REFERENCES......Page 485
CHAPTER 19: ROTARY TRANSFORMER DESIGN......Page 486
BASIC ROTARY TRANSFORMER......Page 488
SQUARE WAVE TECHNOLOGY......Page 489
ROTARY TRANSFORMER LEAKAGE INDUCTANCE......Page 491
CURRENT-FED SINE WAVE CONVERTER APPROACH......Page 492
ROTARY TRANSFORMER DESIGN CONSTRAINTS......Page 493
REFERENCES......Page 495
CHAPTER 20: PLANAR TRANSFORMERS......Page 496
PLANAR TRANSFORMER BASIC CONSTRUCTION......Page 498
PLANAR INTEGRATED PC BOARD MAGNETICS......Page 500
CORE GEOMETRIES......Page 501
PLANAR TRANSFORMER AND INDUCTOR DESIGN EQUATIONS......Page 502
WINDOW UTILIZATION, KU......Page 503
CURRENT DENSITY, J......Page 504
PRINTED CIRCUIT WINDINGS......Page 506
CALCULATING THE MEAN LENGTH TURN, MLT......Page 507
WINDING RESISTANCE AND DISSIPATION......Page 508
PC WINDING CAPACITANCE......Page 509
WINDING TERMINATION......Page 511
PC BOARD BASE MATERIALS......Page 512
CORE MOUNTING AND ASSEMBLY......Page 513
REFERENCES......Page 514
CHAPTER 21: DERIVATIONS FOR THE DESIGN EQUATIONS......Page 515
INTRODUCTION......Page 517
INTRODUCTION......Page 519
INTRODUCTION......Page 523
INTRODUCTION......Page 525
INTRODUCTION......Page 528
TRANSFORMER REGULATION......Page 531