Toposes, Triples and Theories

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

CONTENTS ======== Preface 1. Categories 1 Definition of category 2 Functors 3 Natural transformations 4 Elements and Subobjects 5 The Yoneda Lemma 6 Pullbacks 7 Limits 8 Colimits 9 Adjoint functors 10 Filtered colimits 11 Notes to Chapter I 2. Toposes 63 1 Basic Ideas about Toposes 2 Sheaves on a Space 3 Properties of Toposes 4 The Beck Conditions 5 Notes to Chapter 2 3. Triples 83 1 Definition and Examples 2 The Kleisli and Eilenberg-Moore Categories 3 Tripleability 4 Properties of Tripleable Functors 5 Suficient Conditions for Tripleability 6 Morphisms of Triples 7 Adjoint Triples 8 Historical Notes on Triples 4. Theories 123 1 Sketches 2 The Ehresmann-Kennison Theorem 3 Finite-Product Theories 4 Left Exact Theories 5 Notes on Theories 5. Properties of Toposes 148 1 Tripleability of P 2 Slices of Toposes 3 Logical Functors 4 Toposes are Cartesian Closed 5 Exactness Properties of Toposes 6 The Heyting Algebra Structure on 6. Permanence Properties of Toposes 170 1 Topologies 2 Sheaves for a Topology 3 Sheaves form a topos 4 Left exact cotriples 5 Left exact triples 6 Categories in a Topos 7 Grothendieck Topologies 8 Giraud's Theorem 7. Representation Theorems 207 1 Freyd's Representation Theorems 2 The Axiom of Choice 3 Morphisms of Sites 4 Deligne's Theorem 5 Natural Number Objects 6 Countable Toposes and Separable Toposes 7 Barr's Theorem 8 Notes to Chapter 7 8. Cocone Theories 240 1 Regular Theories 2 Finite Sum Theories 3 Geometric Theories 4 Properties of Model Categories 9. More on Triples 252 1 Duskin's Tripleability Theorem 2 Distributive Laws 3 Colimits of Triple Algebras 4 Free Triples Bibliography 275 Index of exercises Index

Author(s): Michael Barr, Charles Wells
Series: Grundlehren der mathematischen Wissenschaften
Edition: 1
Publisher: Springer
Year: 1984

Language: English
Commentary: Vector PDF, book cover, 2-level bookmarks, pagination.
Pages: 308

Front Cover......Page 1
Contents......Page 8
Preface......Page 10
1 Definition of category......Page 17
2 Functors......Page 26
3 Natural transformations......Page 30
4 Elements and Subobjects......Page 33
5 The Yoneda Lemma......Page 38
6 Pullbacks......Page 41
7 Limits......Page 47
8 Colimits......Page 57
9 Adjoint functors......Page 63
10 Filtered colimits......Page 74
11 Notes to Chapter I......Page 77
1 Basic Ideas about Toposes......Page 79
2 Sheaves on a Space......Page 83
3 Properties of Toposes......Page 89
4 The Beck Conditions......Page 94
5 Notes to Chapter 2......Page 97
1 Definition and Examples......Page 99
2 The Kleisli and Eilenberg-Moore Categories......Page 104
3 Tripleability......Page 109
4 Properties of Tripleable Functors......Page 120
5 Suficient Conditions for Tripleability......Page 125
6 Morphisms of Triples......Page 127
7 Adjoint Triples......Page 131
8 Historical Notes on Triples......Page 137
4. Theories......Page 139
1 Sketches......Page 140
2 The Ehresmann-Kennison Theorem......Page 144
3 Finite-Product Theories......Page 146
4 Left Exact Theories......Page 152
5 Notes on Theories......Page 161
1 Tripleability of P......Page 164
2 Slices of Toposes......Page 166
3 Logical Functors......Page 168
4 Toposes are Cartesian Closed......Page 173
5 Exactness Properties of Toposes......Page 175
6 The Heyting Algebra Structure on......Page 182
1 Topologies......Page 186
2 Sheaves for a Topology......Page 191
3 Sheaves form a topos......Page 196
4 Left exact cotriples......Page 198
5 Left exact triples......Page 201
6 Categories in a Topos......Page 205
7 Grothendieck Topologies......Page 211
8 Giraud's Theorem......Page 215
1 Freyd's Representation Theorems......Page 223
2 The Axiom of Choice......Page 227
3 Morphisms of Sites......Page 231
4 Deligne's Theorem......Page 237
5 Natural Number Objects......Page 238
6 Countable Toposes and Separable Toposes......Page 246
7 Barr's Theorem......Page 251
8 Notes to Chapter 7......Page 253
1 Regular Theories......Page 256
2 Finite Sum Theories......Page 259
3 Geometric Theories......Page 260
4 Properties of Model Categories......Page 262
1 Duskin's Tripleability Theorem......Page 268
2 Distributive Laws......Page 275
3 Colimits of Triple Algebras......Page 280
4 Free Triples......Page 284
References......Page 291
Index of exercises......Page 296
Index......Page 300
Back Cover......Page 308