Topology control is fundamental to solving scalability and capacity problems in large-scale wireless ad hoc and sensor networks. Forthcoming wireless multi-hop networks such as ad hoc and sensor networks will allow network nodes to control the communication topology by choosing their transmitting ranges. Briefly, topology control (TC) is the art of co-ordinating nodes’ decisions regarding their transmitting ranges, to generate a network with the desired features. Building an optimized network topology helps surpass the prevalent scalability and capacity problems.
Topology Control in Wireless Ad Hoc and Sensor Networks makes the case for topology control and provides an exhaustive coverage of TC techniques in wireless ad hoc and sensor networks, considering both stationary networks, to which most of the existing solutions are tailored, and mobile networks. The author introduces a new taxonomy of topology control and gives a full explication of the applications and challenges of this important topic.
Topology Control in Wireless Ad Hoc and Sensor Networks:
- Defines topology control and explains its necessity, considering both stationary and mobile networks.
- Describes the most representative TC protocols and their performance.
- Covers the critical transmitting range for stationary and mobile networks, topology optimization problems such as energy efficiency, and distributed topology control.
- Discusses implementation and ‘open issues’, including realistic models and the effect of multi-hop data traffic.
- Presents a case study on routing protocol design, to demonstrate how TC can ease the design of cooperative routing protocols.
This invaluable text will provide graduate students in Computer Science, Electrical and Computer Engineering, Applied Mathematics and Physics, researchers in the field of ad hoc networking, and professionals in wireless telecoms as well as networking system developers with a single reference resource on topology control.
Author(s): Dr Paolo Santi
Publisher: Wiley
Year: 2005
Language: English
Pages: 280
Cover......Page 1
Contents......Page 9
About the Author......Page 15
Book Overview......Page 17
How to Use This Book......Page 20
Acknowledgments......Page 21
List of Abbreviations......Page 23
List of Figures......Page 25
List of Tables......Page 29
Introduction......Page 31
1.1 The Future of Wireless Communication......Page 33
1.2 Challenges......Page 37
2.1 The Wireless Channel......Page 43
2.2 The Communication Graph......Page 46
2.3 Modeling Energy Consumption......Page 49
2.4 Mobility Models......Page 52
2.5 Asymptotic Notation......Page 55
3.1 Motivations for Topology Control......Page 57
3.2 A Definition of Topology Control......Page 60
3.3 A Taxonomy of Topology Control......Page 61
3.4 Topology Control in the Protocol Stack......Page 63
The Critical Transmitting Range......Page 67
4 The CTR for Connectivity: Stationary Networks......Page 69
4.1 The CTR in Dense Networks......Page 72
4.2 The CTR in Sparse Networks......Page 76
4.3 The CTR with Different Deployment Region and Node Distribution......Page 79
4.4 Irregular Radio Coverage Area......Page 80
5 The CTR for Connectivity: Mobile Networks......Page 83
5.1 The CTR in RWP Mobile Networks......Page 85
5.2 The CTR with Bounded, Obstacle-free Mobility......Page 90
6.1 The CTR for k-connectivity......Page 93
6.2 The CTR for Connectivity with Bernoulli Nodes......Page 95
6.3 The Critical Coverage Range......Page 98
Topology Optimization Problems......Page 101
7.1 Problem Definition......Page 103
7.2 The RA Problem in One-dimensional Networks......Page 104
7.3 The RA Problem in Two- and Three-dimensional Networks......Page 106
7.4 The Symmetric Versions of the Problem......Page 108
7.5 The Energy Cost of the Optimal Range Assignment......Page 115
8.1 Energy-efficient Unicast......Page 117
8.2 Energy-efficient Broadcast......Page 122
Distributed Topology Control......Page 125
9.1 Ideal Features of a Topology Control Protocol......Page 127
9.3 Logical and Physical Node Degrees......Page 129
10.1 The R&M Protocol......Page 133
10.2 The LMST Protocol......Page 140
11.1 The CBTC Protocol......Page 145
11.2 The DistRNG Protocol......Page 152
12.1 The Number of Neighbors for Connectivity......Page 157
12.2 The KNeigh Protocol......Page 164
12.3 The XTC Protocol......Page 168
13 Dealing with Node Mobility......Page 173
13.1 TC Design Guidelines with Mobility......Page 174
13.2 TC in Mobile Networks: an Example......Page 177
13.3 The Effect of Mobility on the CNN......Page 182
13.4 Distributed TC in Mobile Networks: Existing Solutions......Page 183
Toward an Implementation of Topology Control......Page 189
14 Level-based Topology Control......Page 191
14.2 The COMPOW Protocol......Page 192
14.3 The CLUSTERPOW Protocol......Page 199
14.4 The KNeighLev Protocol......Page 206
14.5 Comparing CLUSTERPOW and KNeighLev......Page 214
15.1 TC for Interference......Page 219
15.2 More-realistic Models......Page 223
15.4 Considering MultiHop Data Traffic......Page 226
15.5 Implementation of TC......Page 229
Case Study and Appendices......Page 231
16.1 Cooperation in Ad Hoc Networks......Page 233
16.2 Reference Application Scenario......Page 235
16.3 Modeling Routing as a Game......Page 237
16.4 A Practical Interpretation of Truthfulness......Page 239
16.5 Truthful Routing without TC......Page 240
16.6 Truthful Routing with TC......Page 241
16.7 Conclusion......Page 253
A.1 Basic Definitions......Page 255
A.2 Proximity Graphs......Page 259
B.1 Basic Notions of Probability Theory......Page 263
B.2 Geometric Random Graphs......Page 266
B.3 Occupancy Theory......Page 267
B.4 Continuum Percolation......Page 269
References......Page 271
Index......Page 279