Author(s): James Dugundji
Series: Allyn and Bacon Series in Advanced Mathematics
Edition: 12th printing
Publisher: Allyn and Bacon
Year: 1978
Language: English
Pages: 463
Tags: Topology
Table of contents :
Front Cover......Page 1
Title Page......Page 4
Copyright Information......Page 5
Dedication......Page 6
Preface......Page 8
Contents......Page 10
Basic Notation......Page 17
1 Sets......Page 18
2 Boolean Algebra......Page 20
3 Cartesian Product......Page 24
4 Families of Sets......Page 25
6 Functions, or Maps......Page 27
7 Binary Relations; Equivalence Relations......Page 31
8 Axiomatics......Page 34
9 General Cartesian Products......Page 38
Problems......Page 42
1 Orderings......Page 46
2 Zorn's Lemma; Zermelo's Theorem......Page 48
3 Ordinals......Page 53
4 Comparability of Ordinals......Page 55
5 Transfinite Induction and Construction......Page 57
6 Ordinal Numbers......Page 58
7 Cardinals......Page 62
8 Cardinal Arithmetic......Page 66
9 The Ordinal Number Ω......Page 71
Problems......Page 74
1 Topological Spaces......Page 79
2 Basis for a Given Topology......Page 81
3 Topologizing of Sets......Page 82
4 Elementary Concepts......Page 85
5 Topologizing with Preassigned Elementary Operations......Page 89
6 G_δ, F_σ, and Borel Sets......Page 91
7 Relativization......Page 94
8 Continuous Maps......Page 95
9 Piecewise Definition of Maps......Page 98
10 Continuous Maps into E¹......Page 100
11 Open Maps and Closed Maps......Page 103
12 Homeomorphism......Page 104
Problems......Page 107
1 Cartesian Product Topology......Page 115
2 Continuity of Maps......Page 118
3 Slices in Cartesian Products......Page 120
4 Peano Curves......Page 121
Problems......Page 122
1 Connectedness......Page 124
2 Applications......Page 127
3 Components......Page 128
4 Local Connectedness......Page 130
5 Path-Connectedness......Page 131
Problems......Page 133
1 Identification Topology......Page 137
2 Subspaces......Page 139
3 General Theorems......Page 140
4 Spaces with Equivalence Relations......Page 142
5 Cones and Suspensions......Page 143
6 Attaching of Spaces......Page 144
7 The Relation K(f) for Continuous Maps......Page 146
8 Weak Topologies......Page 148
Problems......Page 150
1 Hausdorff Spaces......Page 154
2 Regular Spaces......Page 158
3 Normal Spaces......Page 161
4 Urysohn's Characterization of Normality......Page 163
5 Tietze's Characterization of Normality......Page 166
6 Covering Characterization of Normality......Page 169
7 Completely Regular Spaces......Page 170
Problems......Page 173
1 Coverings of Spaces......Page 177
2 Paracompact Spaces......Page 179
3 Types of Refinements......Page 184
4 Partitions of Unity......Page 186
5 Complexes; Nerves of Coverings......Page 188
6 Second-countable Spaces; Lindelof Spaces......Page 190
7 Separability......Page 192
Problems......Page 194
1 Metrics on Sets......Page 198
2 Topology Induced by a Metric......Page 199
4 Continuity of the Distance......Page 201
5 Properties of Metric Topologies......Page 202
6 Maps of Metric Spaces into Affine Spaces......Page 204
7 Cartesian Products of Metric Spaces......Page 206
8 The Space ℓ²(A); Hilbert Cube......Page 208
9 Metrization of Topological Spaces......Page 210
10 Gauge Spaces......Page 215
11 Uniform Spaces......Page 217
Problems......Page 221
1 Sequences and Nets......Page 226
2 Filterbases in Spaces......Page 228
3 Convergence Properties of Filterbases......Page 230
5 Continuity; Convergence in Cartesian Products......Page 232
6 Adequacy of Sequences......Page 234
7 Maximal Filterbases......Page 235
Problems......Page 237
1 Compact Spaces......Page 239
2 Special Properties of Compact Spaces......Page 243
3 Countable Compactness......Page 245
4 Compactness in Metric Spaces......Page 250
5 Perfect Maps......Page 252
6 Local Compactness......Page 254
7 σ-Compact Spaces......Page 257
8 Compactification......Page 259
9 k-Spaces......Page 264
10 Baire Spaces; Category......Page 266
Problems......Page 268
1 The Compact-open Topology......Page 274
2 Continuity of Composition; the Evaluation Map......Page 276
3 Cartesian Products......Page 277
4 Application to Identification Topologies......Page 279
5 Basis for Z^{Y}......Page 280
6 Compact Subsets of Z^{Y}......Page 282
7 Sequential Convergence in the c-Topology......Page 284
8 Metric Topologies; Relation to the c-Topology......Page 286
9 Pointwise Convergence......Page 289
10 Comparison of Topologies in Z^{Y}......Page 291
Problems......Page 292
1 Continuity of the Algebraic Operations......Page 295
2 Algebras in C^(Y;c)......Page 296
3 Stone-Weierstrass Theorem......Page 298
4 The Metric Space C(Y)......Page 301
5 Embedding of Y in C(Y)......Page 302
6 The Ring C^(Y)......Page 304
Problems......Page 307
1 Cauchy Sequences......Page 309
2 Complete Metrics and Complete Spaces......Page 310
3 Cauchy Filterbases; Total Boundedness......Page 313
4 Baire's Theorem for Complete Metric Spaces......Page 316
5 Extension of Uniformly Continuous Maps......Page 319
6 Completion of a Metric Space......Page 321
7 Fixed-Point Theorem for Complete Spaces......Page 322
8 Complete Subspaces of Complete Spaces......Page 324
9 Complete Gauge Structures......Page 325
Problems......Page 328
1 Homotopy......Page 332
2 Homotopy Classes......Page 334
3 Homotopy and Function Spaces......Page 336
4 Relative Homotopy......Page 338
5 Retracts and Extendability......Page 339
6 Deformation Retraction and Homotopy......Page 340
7 Homotopy and Extendability......Page 343
8 Applications......Page 347
Problems......Page 349
1 Degree of a Map Sⁿ → Sⁿ......Page 352
2 Brouwer's Theorem......Page 357
3 Further Applications of the Degree of a Map......Page 358
4 Maps of Spheres into Sⁿ......Page 360
5 Maps of Spaces into Sⁿ......Page 363
6 Borsuk's Antipodal Theorem......Page 364
7 Degree and Homotopy......Page 367
Problems......Page 370
XVII. Topology of Eⁿ......Page 372
1 Components of Compact Sets in Eⁿ⁺¹......Page 373
2 Borsuk's Separation Theorem......Page 374
3 Domain Invariance......Page 375
4 Deformations of Subsets of Eⁿ⁺¹......Page 376
5 The Jordan Curve Theorem......Page 378
Problems......Page 380
1 Homotopy Type......Page 382
2 Homotopy-Type Invariants......Page 384
4 Mapping Cylinder......Page 385
5 Properties of X in C(f)......Page 388
6 Change of Bases in C(f)......Page 389
Problems......Page 391
1 Path Spaces......Page 393
2 H-Structures......Page 396
3 H-Homomorphisms......Page 398
4 H-Spaces......Page 400
5 Units......Page 401
6 Inversion......Page 403
7 Associativity......Page 404
8 Path Spaces on H-Spaces......Page 405
Problems......Page 407
1 Fiber Spaces......Page 409
2 Fiber Spaces for the Class of All Spaces......Page 412
3 The Uniformization Theorem of Hurewicz......Page 416
4 Locally Trivial Fiber Structures......Page 421
Problems......Page 425
Appendix One: Vector Spaces; Polytopes......Page 427
Appendix Two: Direct and Inverse Limits......Page 437
Index......Page 454