Topology

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): John G. Hocking, Gail S. Young
Edition: NOTE: EX-LIBRARY COPY
Year: 1961

Language: English
Pages: 374
Tags: Математика;Топология;Общая топология;

Contents......Page 8
Preface......Page 4
A Note on Set-Theoretic Concepts......Page 6
1-1 Introduction......Page 12
1-2 Topological spaces......Page 16
1-3 Basis and subbasis of a topology......Page 17
1-4 Metric spaces and metric topologies......Page 20
1-5 Continuous mappings......Page 23
1-6 Connectedness. Subspace topologies......Page 25
1-7 Compactness......Page 29
1-8 Product spaces......Page 32
1-9 Some theorems in logic......Page 34
1-10 The Tychonoff theorem......Page 36
1-11 Function spaces......Page 39
1-12 Uniform continuity and uniform spaces......Page 41
*1-13 Kuratowski's closure operation......Page 43
1-14 Topological groups......Page 44
2-2 Separation axioms......Page 48
2-3 T_3- and T_4-spaces......Page 51
2-4 Continua in Hausdorff spaces......Page 54
2-5 The interval and the circle......Page 63
2-6 Real functions on a space......Page 67
2-7 The Tietze extension theorem......Page 70
2-8 Completely separable spaces......Page 75
2-9 Mappings into Hilbert space. A metrization theorem......Page 78
2-10 Locally compact spaces......Page 82
*2-11 Paracompact spaces......Page 88
*2-12 A general metrization theorem......Page 91
2-13 Complete metric spaces. The Baire-Moore theorem......Page 92
2-14 Inverse limit systems......Page 102
*2-15 A characterization of the Cantor set......Page 108
2-16 Limits inferior and superior......Page 111
3-1 Locally connected spaces......Page 116
3-2 Arcs, arcwise connectivity, and accessibility......Page 126
3-3 Mappings of the interval......Page 133
3-4 Mappings of the Cantor set......Page 137
3-5 The Hahn-Mazurkiewicz theorem......Page 140
3-6 Decomposition spaces and continuous transformations......Page 143
3-7 Monotone and light mappings......Page 147
*3-8 Indecomposable continua......Page 150
*3-9 Dimension theory......Page 156
4-1 Introduction......Page 160
4-2 Homotopic mappings......Page 161
4-3 Essential and inessential mappings......Page 165
4-4 Homotopically equivalent spaces......Page 168
4-5 The fundamental group......Page 170
4-6 Knots and related imbedding problems......Page 185
4-7 The higher homotopy groups......Page 189
4-8 Covering spaces......Page 199
*4-9 Homotopy connectedness and homotopy local connectedness......Page 201
5-2 Vector spaces......Page 204
5-3 E^n as a vector space over E^l. Barycentric coordinates......Page 206
5-4 Geometric complexes and polytopes......Page 210
5-5 Barycentric subdivision......Page 217
5-6 Simplicial mappings and the simplicial approximation theorem......Page 220
5-7 Abstract simplicial complexes......Page 224
*5-8 An imbedding theorem for polytopes......Page 225
6-1 Introduction......Page 229
6-2 Oriented complexes......Page 233
6-3 Incidence numbers......Page 234
6-4 Chains, cycles, and groups......Page 236
6-5 The decomposition theorem for abelian groups. Betti numbers and torsion coefficients......Page 245
6-6 Zero-dimensional homology groups......Page 249
6-7 The Euler-Poincaré formula......Page 252
6-8 Some general remarks......Page 254
*6-9 Universal coefficients......Page 255
6-10 Simplicial mappings again......Page 259
6-11 Chain-mappings......Page 264
6-12 Cone-complexes......Page 268
6-13 Barycentric subdivision again......Page 269
6-14 The Brouwer degree......Page 274
6-15 The fundamental theorem of algebra, an existence proof......Page 280
6-16 The no-retraction theorem and the Brouwer fixed-point theorem......Page 282
6-17 Mappings into spheres......Page 284
7-1 Relative homology groups......Page 293
7-2 The exact homology sequence......Page 295
7-3 Homomorphisms of exact sequences......Page 298
7-4 The excision theorem......Page 299
7-5 The Mayer-Vietoris sequence......Page 301
7-7 The Eilenberg-Steenrod axioms for homology theory......Page 304
7-8 Relative homotopy theory......Page 306
7-9 Cohomology groups......Page 308
7-10 Relations between chain and cochain groups......Page 311
7-11 Simplicial and chain-mappings......Page 314
7-12 The cohomology product......Page 317
7-13 The cap-product......Page 321
7-14 Relative cohomology theory......Page 323
7-15 Exact sequences in cohomology theory......Page 326
7-16 Relations between homology and cohomology groups......Page 328
8-1 Cech Homology Theory (introduction)......Page 331
8-2 The topological invariance of simplicial homology groups......Page 343
8-3 Cech homology theory (continued)......Page 348
8-4 Induced homomorphisms......Page 350
*8-5 Singular homology theory......Page 352
*8-6 Vietoris homology theory......Page 357
*8-7 Homology local connectedness......Page 358
8-8 Some topology of the n-sphere......Page 361
Books......Page 376
Papers, etc......Page 377
Index......Page 382