Topology

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): James Dugundji
Series: Allyn and Bacon Series in Advanced Mathematics
Edition: 1st
Publisher: Allyn and Bacon, Inc.
Year: 1966

Language: English
Pages: 464

Front Cover......Page 1
Title Page......Page 4
Copyright Information......Page 5
Dedication......Page 6
Preface......Page 8
Contents......Page 10
Basic Notation......Page 17
1 Sets......Page 18
2 Boolean Algebra......Page 20
3 Cartesian Product......Page 24
4 Families of Sets......Page 25
6 Functions, or Maps......Page 27
7 Binary Relations; Equivalence Relations......Page 31
8 Axiomatics......Page 34
9 General Cartesian Products......Page 38
Problems......Page 42
1 Orderings......Page 46
2 Zorn's Lemma; Zermelo's Theorem......Page 48
3 Ordinals......Page 53
4 Comparability of Ordinals......Page 55
5 Transfinite Induction and Construction......Page 57
6 Ordinal Numbers......Page 58
7 Cardinals......Page 62
8 Cardinal Arithmetic......Page 66
9 The Ordinal Number Ω......Page 71
Problems......Page 74
1 Topological Spaces......Page 79
2 Basis for a Given Topology......Page 81
3 Topologizing of Sets......Page 82
4 Elementary Concepts......Page 85
5 Topologizing with Preassigned Elementary Operations......Page 89
6 G_δ, F_σ, and Borel Sets......Page 91
7 Relativization......Page 94
8 Continuous Maps......Page 95
9 Piecewise Definition of Maps......Page 98
10 Continuous Maps into E¹......Page 100
11 Open Maps and Closed Maps......Page 103
12 Homeomorphism......Page 104
Problems......Page 107
1 Cartesian Product Topology......Page 115
2 Continuity of Maps......Page 118
3 Slices in Cartesian Products......Page 120
4 Peano Curves......Page 121
Problems......Page 122
1 Connectedness......Page 124
2 Applications......Page 127
3 Components......Page 128
4 Local Connectedness......Page 130
5 Path-Connectedness......Page 131
Problems......Page 133
1 Identification Topology......Page 137
2 Subspaces......Page 139
3 General Theorems......Page 140
4 Spaces with Equivalence Relations......Page 142
5 Cones and Suspensions......Page 143
6 Attaching of Spaces......Page 144
7 The Relation K(f) for Continuous Maps......Page 146
8 Weak Topologies......Page 148
Problems......Page 150
1 Hausdorff Spaces......Page 154
2 Regular Spaces......Page 158
3 Normal Spaces......Page 161
4 Urysohn's Characterization of Normality......Page 163
5 Tietze's Characterization of Normality......Page 166
6 Covering Characterization of Normality......Page 169
7 Completely Regular Spaces......Page 170
Problems......Page 173
1 Coverings of Spaces......Page 177
2 Paracompact Spaces......Page 179
3 Types of Refinements......Page 184
4 Partitions of Unity......Page 186
5 Complexes; Nerves of Coverings......Page 188
6 Second-countable Spaces; Lindelof Spaces......Page 190
7 Separability......Page 192
Problems......Page 194
1 Metrics on Sets......Page 198
2 Topology Induced by a Metric......Page 199
4 Continuity of the Distance......Page 201
5 Properties of Metric Topologies......Page 202
6 Maps of Metric Spaces into Affine Spaces......Page 204
7 Cartesian Products of Metric Spaces......Page 206
8 The Space ℓ²(A); Hilbert Cube......Page 208
9 Metrization of Topological Spaces......Page 210
10 Gauge Spaces......Page 215
11 Uniform Spaces......Page 217
Problems......Page 221
1 Sequences and Nets......Page 226
2 Filterbases in Spaces......Page 228
3 Convergence Properties of Filterbases......Page 230
5 Continuity; Convergence in Cartesian Products......Page 232
6 Adequacy of Sequences......Page 234
7 Maximal Filterbases......Page 235
Problems......Page 237
1 Compact Spaces......Page 239
2 Special Properties of Compact Spaces......Page 243
3 Countable Compactness......Page 245
4 Compactness in Metric Spaces......Page 250
5 Perfect Maps......Page 252
6 Local Compactness......Page 254
7 σ-Compact Spaces......Page 257
8 Compactification......Page 259
9 k-Spaces......Page 264
10 Baire Spaces; Category......Page 266
Problems......Page 268
1 The Compact-open Topology......Page 274
2 Continuity of Composition; the Evaluation Map......Page 276
3 Cartesian Products......Page 277
4 Application to Identification Topologies......Page 279
5 Basis for Z^{Y}......Page 280
6 Compact Subsets of Z^{Y}......Page 282
7 Sequential Convergence in the c-Topology......Page 284
8 Metric Topologies; Relation to the c-Topology......Page 286
9 Pointwise Convergence......Page 289
10 Comparison of Topologies in Z^{Y}......Page 291
Problems......Page 292
1 Continuity of the Algebraic Operations......Page 295
2 Algebras in C^(Y;c)......Page 296
3 Stone-Weierstrass Theorem......Page 298
4 The Metric Space C(Y)......Page 301
5 Embedding of Y in C(Y)......Page 302
6 The Ring C^(Y)......Page 304
Problems......Page 307
1 Cauchy Sequences......Page 309
2 Complete Metrics and Complete Spaces......Page 310
3 Cauchy Filterbases; Total Boundedness......Page 313
4 Baire's Theorem for Complete Metric Spaces......Page 316
5 Extension of Uniformly Continuous Maps......Page 319
6 Completion of a Metric Space......Page 321
7 Fixed-Point Theorem for Complete Spaces......Page 322
8 Complete Subspaces of Complete Spaces......Page 324
9 Complete Gauge Structures......Page 325
Problems......Page 328
1 Homotopy......Page 332
2 Homotopy Classes......Page 334
3 Homotopy and Function Spaces......Page 336
4 Relative Homotopy......Page 338
5 Retracts and Extendability......Page 339
6 Deformation Retraction and Homotopy......Page 340
7 Homotopy and Extendability......Page 343
8 Applications......Page 347
Problems......Page 349
1 Degree of a Map Sⁿ → Sⁿ......Page 352
2 Brouwer's Theorem......Page 357
3 Further Applications of the Degree of a Map......Page 358
4 Maps of Spheres into Sⁿ......Page 360
5 Maps of Spaces into Sⁿ......Page 363
6 Borsuk's Antipodal Theorem......Page 364
7 Degree and Homotopy......Page 367
Problems......Page 370
XVII. Topology of Eⁿ......Page 372
1 Components of Compact Sets in Eⁿ⁺¹......Page 373
2 Borsuk's Separation Theorem......Page 374
3 Domain Invariance......Page 375
4 Deformations of Subsets of Eⁿ⁺¹......Page 376
5 The Jordan Curve Theorem......Page 378
Problems......Page 380
1 Homotopy Type......Page 382
2 Homotopy-Type Invariants......Page 384
4 Mapping Cylinder......Page 385
5 Properties of X in C(f)......Page 388
6 Change of Bases in C(f)......Page 389
Problems......Page 391
1 Path Spaces......Page 393
2 H-Structures......Page 396
3 H-Homomorphisms......Page 398
4 H-Spaces......Page 400
5 Units......Page 401
6 Inversion......Page 403
7 Associativity......Page 404
8 Path Spaces on H-Spaces......Page 405
Problems......Page 407
1 Fiber Spaces......Page 409
2 Fiber Spaces for the Class of All Spaces......Page 412
3 The Uniformization Theorem of Hurewicz......Page 416
4 Locally Trivial Fiber Structures......Page 421
Problems......Page 425
Appendix One: Vector Spaces; Polytopes......Page 427
Appendix Two: Direct and Inverse Limits......Page 437
Index......Page 454