Measure Theory has played an important part in the development of functional analysis: it has been the source of many examples for functional analysis, including some which have been leading cases for major advances in the general theory, and certain results in measure theory have been applied to prove general results in analysis. Often the ordinary functional analyst finds the language and a style of measure theory a stumbling block to a full understanding of these developments. Dr Fremlin's aim in writing this book is therefore to identify those concepts in measure theory which are most relevant to functional analysis and to integrate them into functional analysis in a way consistent with that subject's structure and habits of thought. This is achieved by approaching measure theory through the properties of Riesz spaces and especially topological Riesz spaces. Thus this book gathers together material which is not readily available elsewhere in a single collection and presents it in a form accessible to the first-year graduate student, whose knowledge of measure theory need not have progressed beyond that of the ordinary lebesgue integral.
Author(s): D. H. Fremlin
Edition: 1
Publisher: Cambridge University Press
Year: 1974
Language: English
Pages: 281
Cover......Page 1
Title......Page 4
Copyright......Page 5
Contents......Page 6
Acknowledgements......Page 8
Preface......Page 10
Prerequisites......Page 14
11B Suprema and infima......Page 16
11D Functions......Page 17
*11H Exercises......Page 18
12 Partially ordered linear spaces......Page 19
12C Lemma......Page 20
13A Definitions......Page 21
13D Distributive lattices......Page 22
*13H Products......Page 23
14A Definitions......Page 24
14D The distributive law......Page 25
14E Linear maps......Page 26
14F Subspaces......Page 27
14G Quotient spaces: proposition......Page 28
*14J......Page 29
*14K Lemma......Page 30
Notes and comments......Page 31
15C Lemma......Page 32
*15F Bands in Archimedean Riesz spaces......Page 33
*15G Lemma......Page 34
16 Linear maps between Riesz spaces......Page 35
16B Definition......Page 36
16D Theorem......Page 37
*16F Lemma......Page 38
16H Theorem......Page 39
17A Lemma......Page 41
17B Theorem......Page 42
*17C Proposition......Page 43
17G Exercises......Page 44
*18 The countable sup property......Page 45
18D Theorem......Page 46
18E Exercises......Page 47
1XA A partially ordered set......Page 48
1XD The space Rx......Page 49
Further reading for Chapter 1......Page 50
21A Definition......Page 51
22 Locally solid topologies......Page 52
22B Proposition......Page 53
22C Proposition......Page 54
22D Proposition......Page 55
22F Proposition......Page 56
22G Exercises......Page 57
23 Fatou topologies......Page 58
23B Theorem......Page 59
*23D Lemma......Page 60
*23E Notation......Page 61
*23G Lemma......Page 62
*23H Lemma......Page 63
23J Lemma......Page 64
*23L Proposition......Page 65
*23M Lemma......Page 66
Notes and comments......Page 67
24 Lebesgue topologies......Page 68
24C Corollary......Page 69
24G Proposition......Page 70
*24H......Page 71
*24I Corollary......Page 73
24L Exercises......Page 74
Notes and comments......Page 75
25A Proposition......Page 76
25B Corollary......Page 77
25F Proposition......Page 78
251......Page 79
25K Proposition......Page 80
25M Corollary......Page 81
Notes and comments......Page 82
26A Definitions......Page 83
26C Theorem......Page 84
*26E......Page 85
*26F Proposition......Page 86
*26G Corollary......Page 87
26H Exercises......Page 88
Notes and comments......Page 89
2XB The space P(JC)......Page 90
2XG The space co(X)......Page 92
*2XE An example for 26E......Page 93
*2XF......Page 94
*2XG The topology %k(P-, c0)......Page 95
Further reading for Chapter 2......Page 96
31A......Page 97
31D Corollary......Page 98
32A......Page 99
32B Theorem......Page 100
Notes and comments......Page 101
*33 Perfect Riesz spaces......Page 102
33C Corollary......Page 103
Notes and comments......Page 104
Further reading for Chapter 3......Page 105
41 Boolean rings......Page 106
41D M. H. Stone's theorem......Page 107
41G Notation......Page 108
*41H A lemma on suprema and infima......Page 109
41L Exercises......Page 110
Notes and comments......Page 111
42C Theorem......Page 112
42E The Riesz space structure of S(u)......Page 114
42H Proposition......Page 115
42J Order-continuous increasing additive functions......Page 116
42L Theorem......Page 118
*42O Proposition......Page 119
42R Exercises......Page 120
Notes and comments......Page 121
43A Definition......Page 122
43B Lemma......Page 123
43D Theorem......Page 124
44 The space L#......Page 126
44B Theorem......Page 127
Notes and comments......Page 128
45A Definition......Page 129
45C Proposition......Page 130
45D Corollary......Page 131
45G Exercises......Page 133
4X Examples for Chapter 4......Page 134
4XB Rings of sets......Page 135
4XD o-algebras of sets......Page 136
*4XF Algebras of regular open sets......Page 137
4XH Ring homomorphisms induced by functions......Page 140
51 Measure rings......Page 141
51C Proposition......Page 142
51E Proposition......Page 143
Notes and comments......Page 144
52B Proposition......Page 145
52G Lemma......Page 146
52D Proposition......Page 147
52E Proposition......Page 148
*52H Exercises......Page 149
Notes and comments......Page 150
53B Theorem......Page 151
53E Proposition......Page 152
Notes and comments......Page 153
54B Proposition......Page 154
54E Proposition......Page 155
Notes and comments......Page 156
5XB L1
and L#......Page 157
5XC......Page 158
61B Notes......Page 160
61D The measure algebra......Page 161
*61E Inverse-measure-preserving functions......Page 162
61F Further definitions......Page 163
*61I Representation of measure algebras......Page 164
Notes and comments......Page 165
62B Lemma......Page 166
62E Proposition......Page 167
62G Proposition......Page 168
62H......Page 169
621 The multiplication on L°......Page 170
62K Theorem......Page 171
*62L......Page 172
62M Exercises......Page 173
Notes and comments......Page 174
63 Integration......Page 175
63A Theorem......Page 176
63D Proposition......Page 177
63G The duality between L1
and L00......Page 179
63J The Radon-Nikoctym theorem......Page 180
*63K The topology on L°
5......Page 181
63M Exercises......Page 182
Notes and comments......Page 183
64A Definition......Page 184
64D Theorem......Page 185
*64E Theorem......Page 186
64G Definition......Page 187
*64I Proposition......Page 188
64J Exercises......Page 189
65 Banach function spaces......Page 191
65A Theorem......Page 192
65C Definition......Page 194
65D Theorem......Page 195
65E Proposition......Page 196
65F Proposition......Page 197
651 Exercises......Page 198
Notes and comments......Page 199
6XB Lebesgue measure on [0,1]......Page 200
*6XC An inverse-measure-preserving function......Page 201
6XD Sequence spaces......Page 202
6XF Lp
spaces (1 < p < oo)......Page 203
6XG L2
spaces......Page 204
*6XH Orlicz spaces......Page 205
Further reading for Chapter 6......Page 206
71A Theorem......Page 208
71B Definition......Page 211
71F Lemma......Page 212
71G Theorem......Page 214
71H Exercises......Page 215
Notes and comments......Page 216
72B Theorem......Page 217
72E Theorem......Page 219
*72F Lemma......Page 222
Notes and comments......Page 224
73B......Page 225
73C......Page 226
73D Riesz' theorem: first form......Page 227
*73F......Page 228
73G Exercises......Page 229
Notes and comments......Page 230
7XB A non-truncated function space......Page 231
7XC A Baire measure which is not a Borel measure......Page 232
Further reading for Chapter 7......Page 233
81A Definitions......Page 234
81E Lemma......Page 235
81F......Page 236
*81H......Page 238
811 Exercises......Page 240
*82A Lemma......Page 241
*82B Proposition......Page 242
*82C Proposition
x......Page 243
82E Theorem......Page 244
82G Theorem......Page 246
82 J Corollary......Page 247
82L Exercises......Page 248
83 Weak compactness in L-spaces......Page 249
83B Theorem......Page 250
83C Theorem......Page 253
83F Proposition......Page 254
83G Lemma......Page 255
831......Page 256
83J Proposition......Page 257
*83K Sequentially order-continuous linear functionals and countably additive functionals......Page 259
83L Exercises......Page 260
Notes and comments......Page 261
8XA......Page 262
8XC......Page 263
Further reading for Chapter 8......Page 264
Appendix......Page 265
References......Page 273
Index of special symbols......Page 276
Index......Page 278