Author(s): Miguel A. Labrador, Pedro M. Wightman
Publisher: Springer
Year: 2008
Language: English
Pages: 473
Topologcal Methods in Group Theory......Page 1
Preface......Page 7
Contents......Page 11
PART I: ALGEBRAIC TOPOLOGY FORGROUP THEORY......Page 15
CW Complexes and Homotopy......Page 16
Fundamental Group and TietzeTransformations......Page 86
Some Techniques in Homotopy Theory......Page 114
Elementary Geometric Topology......Page 137
PART II: FINITENESS PROPERTIES OFGROUPS......Page 153
The Borel Construction and Bass-Serre Theory......Page 154
Topological Finiteness Properties and Dimension of Groups......Page 171
Homological Finiteness Properties of Groups......Page 190
Finiteness Properties of Some Important Groups......Page 205
PART III: LOCALLY FINITE ALGEBRAICTOPOLOGY FOR GROUP THEORY......Page 225
Locally Finite CW Complexes and Proper Homotopy......Page 226
Locally Finite Homology......Page 236
Cohomology of CW Complexes......Page 265
PART IV: TOPICS IN THE COHOMOLOGYOF INFINITE GROUPS......Page 289
Cohomology of Groups and Ends Of Covering Spaces......Page 290
Filtered Ends of Pairs of Groups......Page 337
Poincaré Duality in Manifolds and Groups......Page 356
PART V: HOMOTOPICAL GROUPTHEORY......Page 369
The Fundamental Group At Infinity......Page 370
Higher homotopy theory of groups......Page 411
PART VI: THREE ESSAYS......Page 430
18.1 l2-Poincaré duality......Page 431
18.2 Quasi-isometry invariants......Page 433
18.3 The Bieri-Neumann-Strebel invariant......Page 439
References......Page 451
Index......Page 460