Theory of High Temperature Superconductivity: A Conventional Approach

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Drawing from the broad spectrum of phenomena, described in more than 100,000 articles on high-Tc superconductivity, in this book, the authors analyze those basic properties for which understanding can be achieved within the framework of traditional methods of theoretical physics. This is the case of the overdoped cuprates for which the "Bardeen program" has been realized: We know their electronic spectrum, we can calculate their basic thermodynamic and electrodynamic properties, and predict new phenomena. The book gives a pedagogical derivation of formulas describing the electron band structure, penetration depth, specific heat, fluctuation conductivity, etc. Prediction of plasmons and their application for a new type of THz generators is considered as well. The book advocates that the strongest exchange interaction in condensed matter physics -- the intraatomic s-d exchange -- is the long sought pairing mechanism in overdoped cuprate superconductors.

Author(s): Todor M. Mishonov, Evgeni S. Penev
Edition: 1
Publisher: World Scientific Publishing Company
Year: 2011

Language: English
Pages: 274
Tags: Физика;Физика твердого тела;Физика сверхпроводимости;

Contents......Page 12
Preface......Page 8
1.1 Introduction......Page 16
1.2 Apology to the band theory......Page 17
1.3 Layered cuprates......Page 19
1.3.1 Effective Cu Hamiltonian......Page 22
1.4 Conduction bands of the RuO2 plane......Page 25
1.5 Discussion......Page 28
1.6 Determining the density of states of thin high-Tc films by field-effect-transistor type microstructures......Page 29
2.1 Introduction......Page 34
2.2.1 The four-band model in a nutshell......Page 36
2.2.2 The Heitler–London and Schubin–Wonsowsky– Zener interactions......Page 39
2.2.2.1 Spin variables......Page 41
2.3 Reduced Hamiltonian and the BCS gap equation......Page 43
2.4 Separable s-d model......Page 44
2.5 Antiferromagnetic character of Jsd......Page 49
2.5.1 Intra-atomic correlations......Page 51
2.5.2 Indirect s-d exchange......Page 52
2.5.3 Effect of mixing wave functions......Page 53
2.6 Dogmatics and more......Page 54
2.6.1 Aesthetics and frustrations of the central dogmas......Page 55
2.6.2 Discussion......Page 59
2.6.3 The reason for the success of the CuO2 plane......Page 63
2.6.4 Tc– s correlations: a crucial test for the pairing mechanism in cuprates......Page 64
2.6.5 Perspectives: if "Tomorrow" comes.......Page 67
3.1 Specific heat......Page 70
3.2 Order parameter equation for anisotropic-gap superconductors......Page 81
3.3 Electrodynamic behavior......Page 90
3.4 The case for Sr2RuO4......Page 95
3.5 Discussion......Page 97
4.1 Plasmons: prediction......Page 100
4.2.1 Introduction......Page 102
4.2.3 Type-II superconductors......Page 103
4.2.3.1 Interface Hall current for type-I MIS structure......Page 107
4.2.4 Experimental set-up for measuring the vortex charge......Page 108
4.2.5.1 Surface Hall current......Page 110
4.2.5.2 Bernoulli effect in thin superconducting film......Page 114
4.2.5.3 Electric charge modulation of the kinetic inductance......Page 117
4.2.6 Discussion......Page 119
5.1 Introduction......Page 122
5.2.1 Formalism......Page 124
5.2.2 Euler–MacLaurin summation for the free energy......Page 129
5.2.3 Layering operator ^L illustrated on the example of paraconductivity......Page 132
5.2.4 Power series for the magnetic moment within the LD model......Page 139
5.2.5 The epsilon algorithm......Page 140
5.2.6 Power series for differential susceptibility......Page 143
5.3.1 General formula for the free energy......Page 145
5.3.2 Fluctuation part of thermodynamic variables......Page 148
5.3.3 Self-consistent approximation for the LD model......Page 154
5.3.4 3D test example......Page 156
5.4.1 Determination of the cuto energy "......Page 158
5.4.2 Determination of the coherence length ab(0)......Page 161
5.4.3 Determination of the Cooper pair life-time constant 0......Page 163
5.4.4 Determination of the Ginzburg number and penetration depth ab(0)......Page 164
5.5 Discussion......Page 165
6.1 Introduction......Page 170
6.2 From TDGL equation via Boltzmann equation to Newton equation......Page 171
6.3.1 High frequency conductivity......Page 174
6.3.2 Hall effect......Page 175
6.3.3 Magnetoconductivity......Page 176
6.3.4 Strong electric fields......Page 177
6.4 Current functional: self-consistent approximation and energy cut-off......Page 178
6.5 Fluctuation conductivity in nanowires......Page 180
6.6 Discussion......Page 183
7.1 Introduction......Page 184
7.2 Solution to the Boltzmann equation......Page 186
7.3 Boltzmann equation and formula for the current......Page 188
7.4 Dimensionless variables......Page 191
7.5 Paraconductivity in a layered metal......Page 193
7.6 Aslamazov–Larkin conductivity for D-dimensional superconductors......Page 196
7.6.1 Strong electric field expansion......Page 198
7.6.2 Weak electric fields below Tc......Page 199
7.7 Striped superconductors and thick films......Page 201
7.8 Determination of the lifetime constant 0......Page 203
7.9 Conductivity correction by detection of 3rd harmonics......Page 205
7.10 Discussion......Page 207
8.1 Introduction......Page 212
8.2 Qualitative picture......Page 213
8.3 Quantitative estimate......Page 216
8.4 Discussion......Page 217
8.5 Outlook: relation between the normal state transport properties and the pairing mechanism......Page 220
9.1 Introduction......Page 224
9.2.1 Qualitative consideration and analogies......Page 225
9.2.2 Formulas for the differential conductivity......Page 227
9.3 Description of the oscillations......Page 230
9.4 Performance of the generator......Page 232
9.5 Possible applications......Page 234
9.6 Initial experimental success in the THz range......Page 236
Acknowledgments, retrospect......Page 238
Bibliography......Page 240
Index......Page 272