This book is decent if you want to design your entire filter in a mathematical modeler and never plan to actually build a filter. There are no real world design examples with experimental results. The only experimental results given are what a circuit simulator spits out for a given prototype filter. It never even mentions diplexer and multiplexer design; one of the most important applications for filters today. Overall this book was very disappointing.
Author(s): Ian C. Hunter
Series: IEE Electromagnetic Waves Series
Publisher: The Institution of Engineering and Technology
Year: 2001
Language: English
Pages: 369
Contents......Page 11
Foreword......Page 12
Preface......Page 14
1.1 Applications of RF and microwave filters
......Page 16
1.2 Ideal lowpass tilters......Page 20
1.3 Minimum phase networks......Page 22
1.4 Amplitude approximation......Page 25
1.6 Summary
......Page 27
1.7 References
......Page 28
2.1 Linear passive time-invariant nciworks......Page 30
2.1.2 Time invariance......Page 31
2.1.4 The bounded real condition
......Page 32
2.2 Losslcss networks......Page 33
2.3 Ladder networks......Page 36
2.4 Synthesis of two-port networks - Darlington synthesis
......Page 37
2.4.1 Cascade syntlicsis......Page 40
2.5 Analysis o f two-port networks - the ABCD matrix......Page 44
2.6 Analysis of two-port networks - the scattering matrix......Page 49
2.6.1 Relationships between ABCD parameters and S parameters
......Page 55
2.7 Even- and odd-mode analysis of symmetrical networks......Page 56
2.8 Analysis by image parameters......Page 59
2.9 Analysis of distributed circuits......Page 61
2.10 Summary......Page 62
2.11 References......Page 63
3.2 The maximally flat prototype......Page 64
3.2.1 Impedance inverters......Page 70
3.3 The Chebyshev prototype......Page 71
3.4 The elliptic function prototype......Page 79
3.5 The generulised Chebyshev prototype......Page 83
3.6 Filters with specified phase and group delay characteristics......Page 86
3.6.1 The maximally flat group lowpass prototype......Page 88
3.6.2 The equidistant linear phase approximation......Page 90
3.6.3 Combined phase and amplitude approximation......Page 92
3.7 Filters with specified time domain characteristics......Page 93
3.8.1 Synthesis of generalised Chebyshev prototypes with
synmetrically located transmission zeros......Page 96
3.8.2 Synthesis of generalised Chebyshev prototypes with
laclder-type networks......Page 101
3.8.3 Asymmetrically located transmission zeros......Page 105
3.9 Summary......Page 113
3.10 References......Page 114
4.2 Impedance transformations......Page 116
4.3 Lowpass toaritrary cut-off frequency lowpass transformation......Page 118
4.3.1 Example
......Page 119
4.4 Lowpass to highpass transformation......Page 120
4.4.1 Example......Page 121
4.5 Lowpass to bandpass transformation......Page 122
4.5.1 Example......Page 129
4.5.2 Nodal Admittance matrix scaling
......Page 131
4.6 Lowpass to bandstop transformation......Page 133
4.6.1 Design example......Page 136
4.7 Effects of Losses on bandpass filters......Page 140
4.8.1 Measurement of input coupling......Page 146
4.8.2 Measurement of inter-resonator coupling......Page 148
4.8.3 Measurement of resonator Q factor......Page 149
4.9 Summary......Page 150
4.10 References......Page 151
5.1 Commesurate distributed circuits......Page 152
5.2 Stepped impedance unit element prototypes......Page 159
5.2.1 Physical realisation of stepped impedance lowpass filters......Page 164
5.3 Broadband TEM filters with generalized Chebyshev characteristics......Page 166
5.3.1 Generaliszed Chebyshev highpass filters......Page 177
5.4 Paralllel coupled transmission lines......Page 180
5.5 The interdigital filter......Page 182
5.5.1 Design example......Page 188
5.5.2 Narrowband interdigital filters......Page 189
5.5.3 Deesign example......Page 191
5.5.4 Physical design of the interdigital filter......Page 192
5.6 The combline filter......Page 197
5.6.1 Design example......Page 207
5.7 The parallel coupled-line filter......Page 209
5.8 Narrowband......Page 212
5.9 Summary......Page 213
5.10 References......Page 214
6.1 Introduction......Page 216
6.2 Basic Theory of waveguides......Page 217
6.2.1 TE Modes......Page 218
6.2.2 TM Modes......Page 223
6.2.4 Rectangular waveguide resonators......Page 224
6.2.5 Numerical example......Page 225
6.2.7 Circular waveguides......Page 227
6.2.8 TE modes......Page 228
6.2.9 TM Modes......Page 230
6.2.11 Numerical example......Page 232
6.3 Design of waveguide bandpass filters......Page 235
6.3.1 Design example......Page 243
6.4 The generalised direct-coupled cavity waveguide filter......Page 245
6.5 Extracted pole waveguide filters......Page 254
6.5.1 Realisation in waveguide......Page 264
6.5.2 Design example......Page 267
6.5.3 Realisation in TE mode cavities......Page 269
6.6 Dual-mode waveguide filters......Page 270
6.6.1 Numerical example......Page 278
6.6.2 Asymmetric realisations for dual-mode filters......Page 280
6.7 Summary......Page 282
6.8 References......Page 283
7.1 Introduction......Page 286
7.2 Dielectric rod waveguides and the TE mode......Page 287
7.3 Dual-mode dielectric resonator......Page 298
7.3.1 Dual-mode conductor-loaded dielectric resonator filters......Page 300
7.4.1 Spherical dielectric resonators......Page 305
7.4.2 Cubic dielectric resonators......Page 313
7.4.3 Design of triple-mode dielectric resonator reflection filters
......Page 316
7.4.4 Design example......Page 320
7.5 Dielectric-loaded filters......Page 324
7.5.1 Dielectric-loaded waveguide filters
......Page 329
7.6 Summary......Page 332
7.7 References......Page 333
8.1 Introduction......Page 336
8.3 Superconducting filters......Page 337
8.4 Surface acoustic wave filters......Page 338
8.5 Active microwave filters......Page 340
8.6 Lossy filters......Page 342
8.6.1 Design of lossy filters - classical predistortion......Page 346
8.6.2 Design of lossy filters -reflection mode type......Page 350
8.6.3 Design example......Page 354
8.7 Summary......Page 358
8.8 References......Page 359
Index......Page 360