Theory and Computation in Hydrodynamic Stability

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

The study of hydrodynamic stability is fundamental to many subjects, ranging from geophysics and meteorology through to engineering design. This treatise covers both classical and modern aspects of the subject, systematically developing it from the simplest physical problems, then progressing to the most complex, considering linear and nonlinear situations, and analyzing temporal and spatial stability. The authors examine each problem both analytically and numerically. Many relevant fluid flows are treated, including those where the fluid may be compressible, or those from geophysics, or those that require salient geometries for description. Details of initial-value problems are explored equally with those of stability. The text includes copious illustrations and an extensive bibliography, making it suitable for courses on hydrodynamic stability or as an authoritative reference for researchers. In this second edition the opportunity has been taken to update the text and, most importantly, provide solutions to the numerous extended exercises.

Author(s): W. O. Criminale, T. L. Jackson, R. D. Joslin
Series: Cambridge Monographs on Mechanics
Edition: 2
Publisher: Cambridge University Press
Year: 2018

Language: English
Pages: 565

Contents......Page 6
Preface to the Second Edition......Page 9
Preface......Page 11
1.1 History, Background and Rationale......Page 14
1.2 Initial-Value Concepts and Stability Bases......Page 24
1.3 Classical Treatment: Modal Expansions......Page 27
1.4 Transient Dynamics......Page 31
1.5 Asymptotic Behavior......Page 33
1.6 Role of Viscosity......Page 34
1.8 Spatial Stability Bases......Page 36
2.1 General Equations......Page 39
2.2 Kelvin–Helmholtz Theory......Page 54
2.3 Piecewise Linear Profile......Page 57
2.4 Inviscid Temporal Theory......Page 63
2.5 Critical Layer Concept......Page 70
2.6 Continuous Profiles......Page 74
2.7 Exercises......Page 82
3.1 Introduction......Page 89
3.2 Channel Flows......Page 90
3.3 Blasius Boundary Layer......Page 96
3.4 Falkner–Skan Flow Family......Page 99
3.5 Unbounded Flows......Page 101
3.6 Discrete and Continuous Spectra......Page 103
3.7 Exercises......Page 107
4.1 Introduction......Page 111
4.2 Gaster’s Transformation......Page 112
4.3 Incompressible Inviscid Flow......Page 114
4.4 Absolute and Convective Instabilities......Page 125
4.5 Incompressible Viscous Flow......Page 129
4.6 Discrete and Continuous Spectra......Page 133
4.7 Exercises......Page 139
5.1 Introduction......Page 141
5.2 Compressible Mixing Layer......Page 142
5.3 Compressible Boundary Layer......Page 164
5.4 Exercises......Page 178
6.1 Coordinate Systems......Page 181
6.2 Taylor Problem......Page 183
6.3 Gortler Vortices......Page 190
6.4 Pipe Flow......Page 193
6.5 Rotating Disk......Page 195
6.6 Trailing Vortex......Page 198
6.7 Round Jet......Page 200
6.8 Exercises......Page 203
7.1 General Properties......Page 204
7.2 Stratified Flow......Page 205
7.3 Effects of Rotation......Page 221
7.4 Baroclinic Flow......Page 226
7.5 The Ekman Layer......Page 229
7.6 Exercises......Page 235
8.1 The Initial-Value Problem......Page 238
8.2 Laplace Transforms......Page 242
8.3 Moving Coordinates and Exact Solutions......Page 245
8.4 Multiple Scale, Multiple Time Analysis......Page 253
8.5 Numerical Solution of Governing Partial Differential Equations......Page 257
8.6 Optimizing Initial Conditions......Page 261
8.7 Exercises......Page 270
9.1 Energy Equation......Page 272
9.2 Weakly Nonlinear Theory......Page 274
9.3 Secondary Instability Theory......Page 276
9.4 Resonant Wave Interactions......Page 285
9.5 PSE Theory......Page 291
9.6 Exercises......Page 298
10.1 Introduction......Page 300
10.2 Influence of Free Stream Turbulence and Receptivity......Page 301
10.3 Tollmien–Schlichting Breakdown......Page 304
10.4 Oblique Wave Breakdown......Page 305
10.5 Crossflow Vortex Breakdown......Page 307
10.6 Dean–Taylor–Gortler Vortex Breakdown......Page 311
10.7 Transition Prediction......Page 314
10.8 Exercises......Page 328
11.1 Introduction......Page 329
11.2 Governing Equations......Page 330
11.3 Temporal DNS Formulation......Page 333
11.4 Spatial DNS Formulation......Page 334
11.5 Large Eddy Simulation......Page 345
11.6 Applications......Page 346
11.7 Summary......Page 359
11.8 Exercises......Page 361
12.1 Introduction......Page 364
12.2 Effects of Flexible Boundaries......Page 365
12.3 Wave Induced Forcing......Page 380
12.4 Feed-Forward and Feedback Control......Page 381
12.5 Optimal Control Theory......Page 384
12.6 Exercises......Page 401
13.1 Experimental Facility......Page 402
13.2 Model Configuration......Page 404
13.3 Inducing Hydrodynamics Instabilities......Page 405
13.4 Measurement Instrumentation......Page 406
13.5 Signal Analysis......Page 409
13.6 Summary......Page 410
Appendix A Mathematical Formulas......Page 412
Appendix B Numerical Methods......Page 414
Appendix C Solutions to Exercises......Page 426
References......Page 530
Author Index......Page 557
Subject Index......Page 562