Theorems of Leray-Schauder type and applications

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Theorems of Leray-Schauder Type and Applications presents a systematic and unified treatment of Leray-Schauder continuation theorems in nonlinear analysis. In particular fixed theory is established for many classes of maps, for example, contractive, non-expansive, accretive and compact. This book also presents concidence and multiplicty results. Many applications of current interest in the theory of nonlinear differential equations are given to complement the theory. The text is essentially self-contained so it may also be used as an introduction to topological methods in nonlinear analysis.

Author(s): Radu Precup
Series: Mathematical Analysis and Applications
Edition: 1
Publisher: CRC Press
Year: 2002

Language: English
Pages: 217

Front cover......Page 1
Series......Page 2
Title page......Page 3
Date-line......Page 4
Dedication......Page 5
Contents......Page 7
Preface......Page 9
1. Overview......Page 11
2.1 The Continuation Principle for Contractions on Spaces with Two Metrics......Page 19
2.2 Global Solutions to the Cauchy Problem on a Bounded Set in Banach Spaces......Page 28
2.3 Boundary Value Problems on a Bounded Set in Banach Spaces......Page 35
3.1 Continuation Theorems......Page 53
3.2 Elements of Geometry of Sobolev Spaces......Page 57
3.3 Sturm-Liouville Problems in Uniformly Convex Banach Spaces......Page 60
4.1 Properties of Accretive Maps......Page 63
4.2 Continuation Principles for Accretive Maps......Page 65
4.3 Applications to Boundary Value Problems in Hilbert Spaces......Page 71
5.1 Monch Continuation Principle......Page 75
5.2 Granas'Topological Transversality Theorem......Page 78
5.3 Measures of Noncompactness on C(I;E)......Page 80
5.4 The Cauchy Problem in Banach Spaces......Page 84
5.5 Sturm-Liouville Problems in Banach Spaces......Page 89
6. Applications to Semilinear Elliptic Problems......Page 93
6.1 Basic Results from the Theory of Linear Elliptic Equations......Page 94
6.2 Applications of the Banach, Schauder and Darbo Fixed Point Theorems......Page 98
6.3 Applications of the Leray-Schauder Type Theorems......Page 101
7.1 Continuation Principles for Coincidences......Page 111
7.2 Application to Periodic Solutions of Differential Systems......Page 117
8.1 Selective Continuation Principles......Page 121
8.2 Continua of Solutions......Page 125
8.3 Continuation with Respect to a Functional......Page 128
8.4 Periodic Solutions ofSuperlinear Singular Boundary Value Problems......Page 130
9.1 A General Continuation Principle......Page 147
9.2 A General Fixed Point Continuation Principle......Page 153
9.3 Continuation Theorems for Maps of Monotone Type......Page 157
10.1 Leray-Schauder Theorems of Compression-Expansion Type......Page 165
10.2 Multiple Solutions of Focal Boundary Value Problems......Page 173
11. Local Continuation Theorems......Page 181
11.1 Local Continuation Theorems for Contractions......Page 182
11.2 The Classical Implicit Function Theorem......Page 186
11.3 Two Special Local Continuation Theorems......Page 189
11.4 Continuation and Stability......Page 191
Epilogue......Page 199
Bibliography......Page 201
Index......Page 215
Back cover......Page 217