The Way of Analysis

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

The Way Of Analysis Gives A Thorough Account Of Real Analysis In One Or Several Variables, From The Construction Of The Real Number System To An Introduction Of The Lebesgue Integral. The Text Provides Proofs Of All Main Results, As Well As Motivations, Examples, Applications, Exercises, And Formal Chapter Summaries. Additionally, There Are Three Chapters On Application Of Analysis, Ordinary Differential Equations, Fourier Series, And Curves And Surfaces To Show How The Techniques Of Analysis Are Used In Concrete Settings.

Author(s): Robert S. Strichartz
Series: Jones and Bartlett Books in Mathematics
Edition: Revised
Publisher: Jones and Bartlett Publishers Inc
Year: 2000

Language: English
Pages: 759

1.1.1 Rules of Quantifiers......Page 20
1.1.2 Examples......Page 23
1.1.3 Exercises......Page 26
1.2.1 Countable Sets......Page 27
1.2.2 Uncountable Sets......Page 29
1.3.1 How to Discover Proofs......Page 32
1.3.2 How to Understand Proofs......Page 36
1.4 The Rational Number System......Page 37
1.5 The Axiom of Choice*......Page 40
2.1.1 Motivation......Page 44
2.1.2 The Definition......Page 49
2.1.3 Exercises......Page 56
2.2.1 Defining Arithmetic......Page 57
2.2.2 The Field Axioms......Page 60
2.2.3 Order......Page 64
2.2.4 Exercises......Page 67
2.3.1 Proof of Completeness......Page 69
2.3.2 Square Roots......Page 71
2.3.3 Exercises......Page 73
2.4.1 Infinite Decimal Expansions......Page 75
2.4.2 Dedekind Cuts*......Page 78
2.4.3 Non-Standard Analysis*......Page 82
2.4.4 Constructive Analysis*......Page 85
2.4.5 Exercises......Page 87
2.5 Summary......Page 88
3.1.1 Limits, Sups, and Infs......Page 92
3.1.2 Limit Points......Page 97
3.1.3 Exercises......Page 103
3.2.1 Open Sets......Page 105
3.2.2 Closed Sets......Page 110
3.2.3 Exercises......Page 117
3.3 Compact Sets......Page 118
3.3.1 Exercises......Page 125
3.4 Summary......Page 126
4.2 Properties of Continuous Functions......Page 130
4.1.1 Definitions......Page 138
4.1.2 Limits of Functions and Limits of Sequences......Page 140
4.1.3 Inverse Images of Open Sets......Page 142
4.1.4 Related Definitions......Page 144
4.2.1 Basic Properties......Page 146
4.2.2 Continuous Functions on Compact Domains......Page 150
4.2.3 Monotone Functions......Page 153
4.2.4 Exercises......Page 157
4.3 Summary......Page 159
5.1.1 Equivalent Definitions......Page 162
5.1.2 Continuity and Continuous Differentiability......Page 167
5.1.3 Exercises......Page 171
5.2.1 Local Properties......Page 172
5.2.2 Intermediate Value and Mean Value Theorems......Page 176
5.2.3 Global Properties......Page 181
5.2.4 Exercises......Page 182
5.3.1 Product and Quotient Rules......Page 184
5.3.2 The Chain Rule......Page 187
5.3.3 Inverse Function Theorem......Page 190
5.3.4 Exercises......Page 195
5.4.1 Interpretations of the Second Derivative......Page 196
5.4.2 Taylor's Theorem......Page 200
5.4.3 L'Hopital's Rule*......Page 204
5.4.4 Lagrange Remainder Formula*......Page 207
5.4.5 Orders of Zeros*......Page 209
5.4.6 Exercises......Page 211
5.5 Summary......Page 214
6.1.1 Existence of the Integral......Page 220
6.1.2 Fundamental Theorems of Calculus......Page 226
6.1.3 Useful Integration Formulas......Page 231
6.1.4 Numerical Integration......Page 233
6.1.5 Exercises......Page 236
6.2.1 Definition of the Integral......Page 238
6.2.2 Elementary Properties of the Integral......Page 243
6.2.3 Functions with a Countable Number of Discontinuities*......Page 246
6.2.4 Exercises......Page 250
6.3.1 Definitions and Examples......Page 251
6.3.2 Exercises......Page 254
6.4 Summary......Page 255
7.1.1 Basic Properties of C......Page 260
7.1.2 Complex-Valued Functions......Page 266
7.1.3 Exercises......Page 268
7.2.1 Convergence and Absolute Convergence......Page 269
7.2.2 Rearrangements......Page 275
7.2.3 Summation by Parts*......Page 279
7.2.4 Exercises......Page 281
7.3.1 Uniform Limits and Continuity......Page 282
7.3.2 Integration and Differentiation of Limits......Page 287
7.3.3 Unrestricted Convergence*......Page 291
7.3.4 Exercises......Page 293
7.4.1 The Radius of Convergence......Page 295
7.4.2 Analytic Continuation......Page 300
7.4.3 Analytic Functions on Complex Domains*......Page 305
7.4.4 Closure Properties of Analytic Functions*......Page 307
7.4.5 Exercises......Page 313
7.5.1 Lagrange Interpolation......Page 315
7.5.2 Convolutions and Approximate Identities......Page 316
7.5.3 The Weierstrass Approximation Theorem......Page 320
7.5.4 Approximating Derivatives......Page 324
7.5.5 Exercises......Page 326
7.6.1 The Definition of Equicontinuity......Page 328
7.6.2 The Arzela-Ascoli Theorem......Page 331
7.6.3 Exercises......Page 333
7.7 Summary......Page 335
8.1.1 Five Equivalent Definitions......Page 342
8.1.2 Exponential Glue and Blip Functions......Page 348
8.1.3 Functions with Prescribed Taylor Expansions*......Page 351
8.1.4 Exercises......Page 354
8.2.1 Definition of Sine and Cosine......Page 356
8.2.2 Relationship Between Sines, Cosines, and Com-......Page
plex Exponentials......Page 363
8.2.3 Exercises......Page 368
8.3 Summary......Page 369
9.1.1 Vector Space and Metric Space......Page 374
9.1.2 Norm and Inner Product......Page 377
9.1.3 The Complex Case......Page 383
9.1.4 Exercises......Page 385
9.2.1 Open Sets......Page 387
9.2.2 Limits and Closed Sets......Page 392
9.2.3 Completeness......Page 393
9.2.4 Compactness......Page 396
9.2.5 Exercises......Page 403
9.3.1 Three Equivalent Definitions......Page 405
9.3.2 Continuous Functions on Compact Domains......Page 410
9.3.3 Connectedness......Page 412
9.3.4 The Contractive Mapping Principle......Page 416
9.3.5 The Stone-Weierstrass Theorem*......Page 418
9.3.6 Nowhere Differentiable Functions, and Worse*......Page 422
9.3.7 Exercises......Page 428
9.4 Summary......Page 431
10.1.1 Definition of Differentiability......Page 438
10.1.2 Partial Derivatives......Page 442
10.1.3 The Chain Rule......Page 447
10.1.4 Differentiation of Integrals......Page 451
10.1.5 Exercises......Page 454
10.2.1 Equality of Mixed Partials......Page 456
10.2.2 Local Extrema......Page 460
10.2.3 Taylor Expansions......Page 467
10.2.4 Exercises......Page 471
10.3 Summary......Page 473
11.1.1 Motivation......Page 478
11.1.2 Picard Iteration......Page 486
11.1.3 Linear Equations......Page 492
11.1.4 Local Existence and Uniqueness*......Page 495
11.1.5 Higher Order Equations*......Page 500
11.1.6 Exercises......Page 502
11.2.1 Difference Equation Approximation......Page 504
11.2.2 Peano Existence Theorem......Page 509
11.2.3 Power-Series Solutions......Page 513
11.2.4 Exercises......Page 519
11.3.1 Integral Curves......Page 520
11.3.2 Hamiltonian Mechanics......Page 524
11.3.3 First-Order Linear P.D.E.'s......Page 525
11.3.4 Exercises......Page 526
11.4 Summary......Page 528
12.1.1 Fourier Series Solutions of P.D.E.'s......Page 534
12.1.2 Spectral Theory......Page 539
12.1.3 Harmonic Analysis......Page 544
12.1.4 Exercises......Page 547
12.2.1 Uniform Convergence for C 1 Functions......Page 550
12.2.2 Summability of Fourier Series......Page 556
12.2.3 Convergence in the Mean......Page 562
12.2.4 Divergence and Gibb's Phenomenon*......Page 569
12.2.5 Solution of the Heat Equation*......Page 574
12.2.6 Exercises......Page 578
12.3 Summary......Page 581
13.1.1 Statement of the Theorem......Page 586
13.1.2 The Proof*......Page 592
13.1.3 Exercises......Page 599
13.2.1 Motivation and Examples......Page 600
13.2.2 Immersions and Embeddings......Page 604
13.2.3 Parametric Description of Surfaces......Page 610
13.2.4 Implicit Description of Surfaces......Page 616
13.2.5 Exercises......Page 619
13.3.1 Lagrange Multipliers......Page 621
13.3.2 A Second Derivative Test*......Page 624
13.3.3 Exercises......Page 628
13.4.1 Rectifiable Curves......Page 629
13.4.2 The Integral Formula for Arc Length......Page 633
13.4.3 Arc Length Parameterization*......Page 635
13.4.4 Exercises......Page 636
13.5 Summary......Page 637
14.1.1 Motivation......Page 642
14.1.2 Properties of Length......Page 646
14.1.3 Measurable Sets......Page 650
14.1.4 Basic Properties of Measures......Page 653
14.1.5 A Formula for Lebesgue Measure......Page 655
14.1.6 Other Examples of Measures......Page 658
14.1.7 Exercises......Page 660
14.2.1 Outer Measures......Page 662
14.2.2 Metric Outer Measure......Page 666
14.2.3 Hausdorff Measures......Page 669
14.2.4 Exercises......Page 673
14.3.1 Non-negative Measurable Functions......Page 674
14.3.2 The Monotone Convergence Theorem......Page 679
14.3.3 Integrable Functions......Page 683
14.3.4 Almost Everywhere......Page 686
14.3.5 Exercises......Page 687
14.4.1 Ll as a Banach Space......Page 689
14.4.2 L2 as a Hilbert Space......Page 692
14.4.3 Fourier Series for L2 Functions......Page 695
14.4.4 Exercises......Page 700
14.5 Summary......Page 701
15.1.1 Integrals of Continuous Functions......Page 710
15.1.2 Fubini's Theorem......Page 713
15.1.3 The Monotone Class Lemma *......Page 719
15.1.4 Exercises......Page 722
15.2.1 Determinants and Volume......Page 724
15.2.2 The Jacobian Factor*......Page 728
15.2.3 Polar Coordinates......Page 733
15.2.4 Change of Variable for Lebesgue Integrals*......Page 736
15.2.5 Exercises......Page 739
15.3 Summary......Page 741
Index......Page 746