The Volume of Convex Bodies and Banach Space Geometry

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Now in paperback, this popular book gives a self-contained presentation of a number of recent results, which relate the volume of convex bodies in n-dimensional Euclidean space and the geometry of the corresponding finite-dimensional normed spaces. The methods employ classical ideas from the theory of convex sets, probability theory, approximation theory, and the local theory of Banach spaces. The first part of the book presents self-contained proofs of the quotient of the subspace theorem, the inverse Santalo inequality and the inverse Brunn-Minkowski inequality. In the second part Pisier gives a detailed exposition of the recently introduced classes of Banach spaces of weak cotype 2 or weak type 2, and the intersection of the classes (weak Hilbert space). This text will be a superb choice for courses in analysis and probability theory.

Author(s): Gilles Pisier
Series: Cambridge tracts in mathematics 94
Publisher: Cambridge University Press
Year: 1999

Language: English
Pages: 267
City: Cambridge; New York