The Tutte polynomial and related polynomials: Lecture notes 2010, 2012, 2014

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): Andrew Goodall
Series: lecture notes
Edition: version 2017-04-10
Year: 2017

Language: English
Commentary: Downloaded from https://iuuk.mff.cuni.cz/~andrew/VKKI.pdf . Combines three other sets of notes by the author.

1 The chromatic polynomial 1
1.1 Graph-theoretic preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The chromatic polynomial and proper colourings . . . . . . . . . . . . . . . 2
1.3 Deletion and contraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Subgraph expansions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5 Some other deletion–contraction invariants. . . . . . . . . . . . . . . . . . . 15
2 Flows and tensions 17
2.1 Orientations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Circuits and cocircuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 The incidence matrix of an oriented graph . . . . . . . . . . . . . . . . . . 21
2.4 A-flows and A-tensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5 Tensions and colourings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.6 Duality of bases for A-tensions and A-flows . . . . . . . . . . . . . . . . . . 28
2.7 Examples of nowhere-zero flows . . . . . . . . . . . . . . . . . . . . . . . . 29
2.8 The flow polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3 The Tutte polynomial 35
3.1 Deletion-contraction recurrence . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Sugraph expansion of the Tutte polynomial . . . . . . . . . . . . . . . . . . 42
3.3 Coefficients. Spanning tree expansion. . . . . . . . . . . . . . . . . . . . . 45
3.4 The Tutte polynomial of a planar graph . . . . . . . . . . . . . . . . . . . 48
3.5 The spanning tree partition of subgraphs. . . . . . . . . . . . . . . . . . . . 50
3.6 The beta invariant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.7 Computational complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.8 The Laplacian and the number of spanning trees . . . . . . . . . . . . . . . 56
3.9 Hamming weight enumerator for tensions and flows . . . . . . . . . . . . . 57
3.10 Bicycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.11 Z 3 -tension-flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4 The Tutte polynomial in statistical physics 64
4.1 Colourings and flows in the ice model . . . . . . . . . . . . . . . . . . . . . 64
4.2 The Potts model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3 The Fortuin-Kasteleyn random cluster model . . . . . . . . . . . . . . . . . 69
5 Graph homomorphisms 71
5.1 Graph invariants and graph homomorphism profiles . . . . . . . . . . . . . 72
5.2 Homomorphism profiles determining graph invariants . . . . . . . . . . . . 74
5.3 Spectrum and degree sequence by left profiles . . . . . . . . . . . . . . . . 76
6 From graphs to matroids 77
6.1 Cuts, circuits and cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.2 Orthogonality of cycles and cutsets . . . . . . . . . . . . . . . . . . . . . . 81
6.3 Graph duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.4 Matroids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.5 Dual matroids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.6 Deletion and contraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7 Connections to knot theory 91
7.1 The medial of a plane graph . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.2 Eulerian tours of digraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.3 2-in 2-out digraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.4 Interlace polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.5 The Kauffman bracket of a link . . . . . . . . . . . . . . . . . . . . . . . . 109