The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book brings together many of the important results in this field.

From the reviews: ""A classic gets even better....The edition has new material including the Novelli-Pak-Stoyanovskii bijective proof of the hook formula, Stanley’s proof of the sum of squares formula using differential posets, Fomin’s bijective proof of the sum of squares formula, group acting on posets and their use in proving unimodality, and chromatic symmetric functions." --ZENTRALBLATT MATH

Author(s): Bruce Sagan
Series: Graduate Texts in Mathematics, Vol. 203
Edition: 2
Publisher: Springer
Year: 2001

Language: English
Commentary: added outline
Pages: 257

Contents
Preface to the 2nd Edition
Preface to the 1st Eition
List of Symbols
1 Group Representations
1.1 Fundamental Concepts
1.2 Matrix Representations
1.3 G-Modules and the Group Algebra
1.4 Reducibility
1.5 Complete Reducibility and Maschke's Theorem
1.6 G-Homomorphisms and Schur's Lemma
1.7 Commutant and Endomorphism Algebras
1.8 Group Characters
1.9 Inner Products of Characters
1.10 Decomposition of the Group Algebra
1.11 Tensor Products Again
1.12 Restricted and Induced Representations
1.13 Exercises
2 Representations of the Symmetric Group
2.1 Young Subgroups, Tableaux, and Tabloids
2.2 Dominance and Lexicographic Ordering
2.3 Specht Modules
2.4 The Submodule Theorem
2.5 Standard Tableaux and a Basis for Sx
2.6 Garnir Elements
2.7 Young's Natural Representation
2.8 The Branching Rule
2.9 The Decomposition of M^
2.10 The Semistandard Basis for Hom(S^A,M^mu)
2.11 Kostka Numbers and Young's Rule
2.12 Exercises
3 Combinatorial Algorithms
3.1 The Robinson-Schensted Algorithm
3.2 Column Insertion
3.3 Increasing and Decreasing Subsequences
3.4 The Knuth Relations
3.5 Subsequences Again
3.6 Viennot's Geometric Construction
3.7 Schutzenberger's Jeu de Taquin
3.8 Dual Equivalence
3.9 Evacuation
3.10 The Hook Formula
3.11 The Determinantal Formula
3.12 Exercises
4 Symmetric Functions
4.1 Introduction to Generating Functions
4.2 The Hillman-Grassl Algorithm
4.3 The Ring of Symmetric Functions
4.4 Schur Functions
4.5 The Jacobi-Trudi Determinants
4.6 Other Definitions of the Schur Function
4.7 The Characteristic Map
4.8 Knuth's Algorithm
4.9 The Littlewood-Richardson Rule
4.10 The Murnaghan-Nakayama Rule
4.11 Exercises
5 Applications and Generalizations
5.1 Young's Lattice and Differential Posets
5.2 Growths and Local Rules
5.3 Groups Acting on Posets
5.4 Unimodality
5.5 Chromatic Symmetric Functions
5.6 Exercises
Bibliography
Index