Author(s): Marilyn Wolf
Edition: 1
Publisher: Elsevier
Year: 2017
Language: English
Pages: 276
Tags: Physics, Computer, Electronics
The Physics of Computing......Page 1
Preface......Page 2
1.2 The long road to computers......Page 7
1.2.1 Mechanical computing devices......Page 8
1.2.2 Theories of computing......Page 10
1.2.3 Electronic computers......Page 12
1.3 Computer system metrics......Page 15
1.4 A tour of this book......Page 16
Questions......Page 17
2.2.1 Early vacuum tube devices......Page 18
2.2.2 Vacuum tube triode......Page 20
2.3 Physics of materials......Page 23
2.3.1 Metals......Page 24
2.3.2 Boltzmann's constant and temperature......Page 27
2.3.3 Semiconductors......Page 29
2.4 Solid-state devices......Page 34
2.4.1 Semiconductor diode......Page 35
2.4.2 MOS capacitor......Page 38
2.4.3 Basic MOSFET operation......Page 42
2.4.4 Advanced MOSFET characteristics......Page 50
2.5 Integrated circuits......Page 53
2.5.1 Moore's Law......Page 54
2.5.2 Manufacturing processes......Page 56
2.5.3 Lithography......Page 60
2.5.4 Yield......Page 62
2.5.5 Separation of concerns......Page 63
Questions......Page 64
3.1 Introduction......Page 68
3.2 The CMOS inverter......Page 69
3.3 Static gate characteristics......Page 72
3.4 Delay......Page 77
3.4.1 Transistor models......Page 78
3.4.2 RC models for delay......Page 81
3.4.3 Drive and loads......Page 88
3.5 Power and energy......Page 90
3.6 Scaling theory......Page 95
3.7 Reliability......Page 99
Questions......Page 101
4.2.1 The event model......Page 104
4.2.2 The network model......Page 105
4.2.3 Gain and reliability......Page 108
4.2.4 Gain and delay......Page 110
4.2.5 Delay and power......Page 113
4.2.7 Power supply and reliability......Page 114
4.2.8 Noise and input/output coupling......Page 120
4.3.1 Parasitic impedance......Page 121
4.3.2 Transmission lines......Page 123
4.3.3 Crosstalk......Page 129
4.3.4 Wiring complexity and Rent's Rule......Page 131
4.4.1 Sequential models......Page 133
4.4.2 Registers......Page 136
4.4.3 Clocking......Page 139
4.4.4 Metastability......Page 145
4.5 Synthesis......Page 149
Questions......Page 150
5.1 Introduction......Page 154
5.2 System reliability......Page 155
5.3.1 Microprocessor characteristics......Page 158
5.3.2 Busses and interconnect......Page 160
5.3.3 Global communication......Page 164
5.3.4 Clocking......Page 166
5.4.1 Memory structures......Page 173
5.4.2 Memory system performance......Page 177
5.4.3 DRAM systems......Page 179
5.4.4 DRAM reliability......Page 181
5.5.1 Magnetic disk drives......Page 182
5.5.2 Flash memory......Page 183
5.5.3 Storage and performance......Page 186
5.6.1 Server systems......Page 187
5.6.2 Mobile systems and batteries......Page 190
5.6.3 Power management......Page 193
5.7 Heat transfer......Page 194
5.7.1 Heat transfer characteristics......Page 195
5.7.2 Heat transfer modeling......Page 197
5.7.3 Heat and reliability......Page 203
5.7.4 Thermal management......Page 205
Questions......Page 206
6.2 Displays......Page 209
6.3 Image sensors......Page 215
6.4 Touch sensors......Page 220
6.5 Microphones......Page 221
6.6 Accelerometers and inertial sensors......Page 222
Questions......Page 224
7.2 Carbon nanotubes......Page 225
7.2.1 Nanotube transistors......Page 226
7.3 Quantum computers......Page 227
7.4 Synthesis......Page 232
A.2 Formulas......Page 233
B.2 RLC device laws......Page 236
B.4 Kirchhoff's laws......Page 237
B.5 Basic circuit analysis......Page 238
B.5.2 Voltage dividers......Page 239
B.5.3 Ladder networks......Page 240
B.6 Differential equations and circuits......Page 241
B.7 Linear time-invariant systems......Page 242
Questions......Page 243
C.1 Introduction......Page 244
C.4 Gaussian distribution......Page 245
D.2 Device characteristics......Page 246
D.3.1 Gate topologies......Page 247
D.3.3 Sakurai–Newton model......Page 249
D.4.1 RC trees......Page 252
D.4.2 Interconnect buffering......Page 253
D.4.3 Inductive interconnect and RLC trees......Page 254
C......Page 256
F......Page 257
L......Page 258
P......Page 259
S......Page 260
W......Page 261