The Neurophysiological Bases of Auditory Perception

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

The International Symposium on Hearing is a triennial, highly-prestigious event where world-class scientists present and discuss the most recent advances in the field of hearing research. The symposium focuses on the relationship between auditory physiology, psychoacoustics, and computational modeling. Presented papers range from basic to applied research, and are published in book format. The books from past editions have a large demand by neuroscientists, otolaryngologists, psychologists, and artificial intelligence researchers.

This meeting is highly special in that every paper is a plenary session given by invitation by a key, world-class auditory scientist. There are no poster sessions. The editors will have to choose the best 60 papers from approximately 80 submitted abstracts. Priority will be given to hot topics and to papers showing significant advances (this is almost guaranteed, anyhow, by the quality of the speakers). Papers will be submitted by invitation only and invitations will be sent only to the most-significant auditory scientists at present. Furthermore, published papers can be regarded as peer-reviewed because they will be accompanied (in print) by a full discussion between the authors and other conference attendants. This format is identical to that of preceding editions of this symposium and has proven highly successful. A full list of past conference books is given below. We will not know the list of chapters until approximately November 2008, that is 6 months before the conference (May 2009). You can get an idea of the type and format of the chapters by having a look at the books for the last two symposium editions, which were published by Springer.

Author(s): Enrique A. Lopez-Poveda, Alan R. Palmer, Ray Meddis
Edition: 1st Edition.
Publisher: Springer
Year: 2010

Language: English
Pages: 635

Cover......Page 1
The Neurophysiological Bases of Auditory Perception (Springer, 2010)......Page 3
ISBN 978-1-4419-5685-9......Page 4
Preface......Page 5
Contents......Page 10
About the Editors......Page 17
Contributors......Page 18
Part I - Peripheral/Cochlear Processing......Page 29
Otoacoustic Emissions Theories Can Be Tested with Behavioral Methods......Page 30
1.1 Introduction......Page 31
1.2.1 Listeners......Page 33
1.2.3.2 TMC Stimuli......Page 34
1.3 Results and Discussion......Page 35
References......Page 40
2.1 Introduction......Page 42
2.2.1 Physiological Recordings and Data Analysis......Page 43
2.3 Results......Page 44
2.4 Discussion......Page 48
References......Page 49
3.1 Introduction......Page 51
3.2.1 Forward-Middle-Ear-Transfer Function......Page 52
3.2.3 Subjects......Page 54
3.3 Results......Page 55
3.4.1 Comparison Between fMETF and ELC......Page 58
3.4.3 A Possible Cochlear Origin of Low-Frequency Hypersensitivity or Tinnitus......Page 59
3.5 Summary......Page 60
References......Page 61
4.1 Introduction......Page 62
4.3 Methods......Page 63
4.4 Results and Discussion......Page 64
4.5.2 Model Predictions......Page 66
4.5.3 Simulating the Effect of the MOCR......Page 67
References......Page 69
The Frequency Selectivity of Gain Reduction Masking: Analysis Using Two Equally-Effective Maskers......Page 71
5.1 Introduction......Page 72
5.2.1 Subjects......Page 73
5.2.4.1 Experiment 1: Off-Frequency GOM......Page 74
5.2.4.4 Experiment 4: Control Experiment......Page 75
5.3.3 Combined Masker Data and Control Experiment......Page 76
5.4.1 Additivity Model......Page 78
5.4.2 Gain Reduction Model......Page 79
5.4.3.2 Gain Reduction Model......Page 80
References......Page 81
6.1 Introduction......Page 83
6.2.3 Cortical Cooling......Page 85
6.3.1 Effect of Cortical Inactivation on the Contralateral Cochlea......Page 86
6.3.2 Effect of Cortical Inactivation on the Ipsilateral Cochlea......Page 88
6.4 Discussion......Page 90
References......Page 91
7.1 Introduction......Page 93
7.2.1 Tecta Mice......Page 94
7.2.2 Y1870C Missense Mutation in TECTA......Page 96
7.2.3 Beta Tectorin Mice: Sharpened Cochlear Tuning in a Mouse with a Genetically Modified Tectorial Membrane......Page 98
References......Page 100
Auditory Prepulse Inhibition of Neuronal Activity in the Rat Cochlear Root Nucleus......Page 102
8.2.1 Animals, Surgery, and Stereotaxic Approach......Page 103
8.2.2 Stimulation, Data Collection, and Analyses......Page 104
8.3.2 Auditory Prepulse Inhibition of Cochlear Root Neurons Response......Page 106
8.3.3 Does Auditory Prepulse Inhibition Occur in Neurons Types of the Ventral Cochlear Nucleus?......Page 107
8.4.1 Auditory Prepulse Inhibition as a Specialized Mechanism of Neuronal Inhibition in the Cochlear Root Nucleus......Page 109
8.4.2 Proposed Mediating Circuit for the Auditory Prepulse Inhibition of the ASR Based on Interstimulus Intervals......Page 111
References......Page 112
Part II - Masking......Page 114
9.1 Introduction......Page 115
9.2 Procedure and Methods......Page 116
9.3 Results......Page 117
9.4 Discussion......Page 119
References......Page 120
10.1 Introduction......Page 121
10.2 Method......Page 124
10.3.1 Sensitivity......Page 125
10.3.2 Auditory-Evoked Potentials......Page 126
10.3.3 Relation Between the Behavioral and Electrophysiological Consequences of Forward Masking......Page 129
10.4 Summary......Page 130
References......Page 131
Neuronal Measures of Threshold and Magnitude of Forward Masking in Primary Auditory Cortex......Page 133
11.1 Introduction......Page 134
11.2.1 Physiological Recordings......Page 135
11.3 Results......Page 136
11.4 Discussion......Page 139
References......Page 141
12.1 Introduction......Page 143
12.2.1 Methods......Page 144
12.2.2 Results......Page 146
12.3 Estimates of Tuning of Auditory Filter Derived from Notched-Noise Masking Data......Page 147
12.5 Estimates of Tuning of Auditory Filter Derived from Band-Pass Noise Masking Data......Page 149
12.6 Summary......Page 150
12.8 Reply Shunsuke Kidani......Page 151
References......Page 152
Part III - Spectral Processing and Coding......Page 153
13.1 Introduction......Page 154
13.2.1 Method and Stimuli......Page 155
13.3 Results......Page 156
13.4 Discussion......Page 159
13.5 Conclusion......Page 161
References......Page 162
Linear and Nonlinear Coding of Sound Spectra by Discharge Rate in Neurons Comprising the Ascending Pathway Through the Latera......Page 163
14.2 Methods......Page 164
14.3 Results......Page 165
14.3.1 General Properties of Spectral Weight Functions......Page 166
14.3.2 Testing the Validity of Spectral Weight Functions......Page 167
14.3.3 Spectral Weight Function Properties for the Different Neuron Types......Page 168
14.4 Discussion......Page 171
References......Page 173
Enhancement in the Marmoset Inferior Colliculus: Neural Correlates of Perceptual “Pop-Out”......Page 174
15.1 Introduction......Page 175
15.2 Methods......Page 176
15.3.1 Examples of Conditioner Influence on Target Response......Page 177
15.3.2 Response Dependence on Notch Width and Isolation of Conditioner Components......Page 178
15.3.3 Enhancement is Not Coupled to the Presence of Postinhibitory Rebound Spikes......Page 179
15.4.1 Neural Mechanisms Underlying Enhancement......Page 180
15.4.2 Comparison with Perception......Page 181
15.4.3 Additional Considerations......Page 182
References......Page 183
16.1 Introduction......Page 185
16.2 Theory......Page 186
16.3 Auditory Evoked Field at Threshold Revisited......Page 188
16.3.1 Data......Page 189
16.3.2 Amplitude Analysis......Page 190
16.3.3 Latency Analysis......Page 191
16.4 Auditory Evoked Response to a Series of Tone Pulses......Page 192
16.4.3 Discussion......Page 193
References......Page 194
Part IV - Pitch and Timbre......Page 196
17.1 Introduction......Page 197
17.2.1 Stimuli......Page 198
17.2.3 Experiment 2: MEG......Page 199
17.3.1 Experiment 1: Pitch Matching......Page 200
17.3.2 Experiment 2: MEG Data......Page 201
17.3.3 Discussion......Page 203
References......Page 205
18.1 Introduction......Page 207
18.2.2 Stimuli......Page 209
18.2.4 FFR Recording Procedure......Page 211
18.3.2 FFR......Page 212
18.4 Discussion......Page 214
References......Page 215
19.1 Introduction......Page 216
19.2 Methods......Page 217
19.2.1 Feed-Forward Processing......Page 219
19.2.2 Feed-Back Processing......Page 220
19.3 Results and Discussion......Page 222
References......Page 224
The Harmonic Organization of Auditory Cortex......Page 225
20.1 Harmonic Inputs to Auditory Cortex......Page 226
20.2 Harmonic Pitch Processing......Page 230
20.3 Temporal Periodicity Processing......Page 232
20.4 Harmonic Organizations of Auditory Cortex......Page 233
References......Page 234
21.1 Timbre, Speech Sounds and Acoustical Scale......Page 237
21.2 Timbre and the Perception of Speech Sounds......Page 239
21.2.1 Timbre in the Perception of “Acoustic Scale Melodies”......Page 240
21.2.2 The Second Dimension of Pitch Hypothesis......Page 244
21.2.4 The Independence of Spectral Envelope Shape......Page 245
References......Page 246
Size Perception for Acoustically Scaled Sounds of Naturally Pronounced and Whispered Words......Page 248
22.2 Experiment......Page 249
22.2.1 Stimuli......Page 250
22.2.2 Discrimination Procedures and Listeners......Page 251
22.2.3 Results on Voiced Words......Page 252
22.2.4 Results on Unvoiced and Whispered Words......Page 254
22.3 Conclusions......Page 255
References......Page 256
Part V - Binaural Hearing......Page 257
23.1 Introduction......Page 258
23.2 Experiment......Page 259
23.2.2 Results......Page 260
23.2.3 Discussion......Page 261
23.3 Modelling......Page 263
23.3.3 Discussion......Page 264
23.4 Conclusions......Page 265
References......Page 266
Interaural Correlations Between +1 and −1 on a Thurstone Scale: Psychometric Functions and a Two-Parameter Model......Page 267
24.1.1 Reasons Against the Use of the Normalized IAC......Page 268
24.1.2 Alternative Hypothesis: Spatial Percept Represented by the dB Scaled Ratio of N0- and Np-Components......Page 269
24.3 Results......Page 270
24.4 Discussion......Page 272
References......Page 273
25.1 Introduction......Page 274
25.2.1 Binaural Modulation......Page 275
25.3 Results......Page 277
25.4 Modeling the Data......Page 279
25.5 Discussion......Page 280
References......Page 281
26.1 Introduction......Page 282
26.2 Methods......Page 283
26.3.1 Sensitivity to ITD in the Envelope and Fine Structure of Noise in the Awake Rabbit IC......Page 284
26.3.2 Characterization of Directional Sensitivity Using ITD-Only in the Awake Rabbit IC......Page 285
26.3.3 Peripheral Factors Determining ITD-Only Sensitivity in Reverberation......Page 287
26.3.4 Directional Sensitivity in the IC with ITD and ILD Cues......Page 288
26.4 Discussion......Page 289
References......Page 291
New Experiments Employing Raised-Sine Stimuli Suggest an Unknown Factor Affects Sensitivity to Envelope-Based ITDs for Stimuli......Page 292
27.2 Generating Raised-Sine Stimuli......Page 293
27.3 Procedure, Results, and Discussion......Page 295
References......Page 301
Modeling Physiological and Psychophysical Responses to Precedence Effect Stimuli......Page 302
28.2.1 Stimuli......Page 303
28.2.2 Model Structure......Page 304
28.2.4 The Readout......Page 305
28.3.1 Simulations of Physiological Data......Page 307
28.4 Conclusions......Page 309
References......Page 311
Binaurally-Coherent Jitter Improves Neural and Perceptual ITD Sensitivity in Normal and Electric Hearing......Page 312
29.2.1 Method......Page 313
29.3.1 Method......Page 315
29.3.2 Jitter Can Restore Ongoing Neural Firing at High Pulse Rates......Page 316
29.3.3 Restoration of Ongoing Firing Reveals ITD Sensitivity......Page 317
29.4 Neural Modeling......Page 319
29.5 General Discussion......Page 320
References......Page 322
30.1 Introduction......Page 323
30.2 Detection Experiment......Page 325
30.4 Discrimination Experiment......Page 326
30.5 Results and Discussion......Page 327
30.6 Lateralization Experiment......Page 328
30.7 Results and Discussion......Page 329
30.8 General Discussion......Page 330
References......Page 331
31.1 Introduction......Page 333
31.2.1.1 Stimuli......Page 334
31.2.2.1 Animals......Page 336
31.2.2.4 Analysis......Page 337
31.3 Results......Page 338
31.4 Discussion......Page 342
References......Page 343
32.1 Introduction......Page 345
32.2.1.2 Apparatus and Stimuli......Page 347
32.2.2 Results......Page 348
32.3.1 Models......Page 350
32.3.2 Model Predictions......Page 351
32.4 Discussion......Page 352
References......Page 353
Short-Term Synaptic Plasticity and Adaptation Contribute to the Coding of Timing and Intensity Information......Page 355
33.2.1 Chick NA Physiology and Simulation......Page 356
33.2.1.1 Recording from Owls’ NM and NL Neurons In Vivo......Page 357
33.3.1 Short-Term Plasticity Affects Intensity Coding in Nucleus Angularis......Page 358
33.3.2 Timing Pathway and Adaptation......Page 361
33.3.2.2 Simulation of NL Coding......Page 362
33.4 Conclusions......Page 363
References......Page 364
34.1 Introduction......Page 365
34.2.1 Physiological Recordings......Page 366
34.2.2 Data Analysis......Page 367
34.3.2 Coding Accuracy Shifts to Accommodate Shifts in HPR Mean......Page 369
34.3.4 Neural Mechanisms Underlying Adaptive Coding of ITDs......Page 370
34.4 Discussion......Page 373
References......Page 374
Phase Shifts in Monaural Field Potentials of the Medial Superior Olive......Page 375
35.2.1 Surgical Preparation......Page 376
35.2.3 Stimuli and Data Collection......Page 377
35.3 Results......Page 378
35.3.1 Current Source Density Analysis......Page 381
35.4 Discussion......Page 383
35.5 Comment by Catherine Carr......Page 384
References......Page 385
Part VI - Speech Processing and Perception......Page 387
Representation of Intelligible and Distorted Speech in Human Auditory Cortex......Page 388
36.2 Generation of Distorted Speech......Page 389
36.3 Psychophysics of Spectrally Rotated Speech......Page 390
36.3.2 Stimulus Presentation......Page 391
36.3.3 Results......Page 392
36.4.1 Stimulus Presentation......Page 393
36.4.3 Scanning Procedure......Page 394
36.4.5 Results......Page 395
36.5 Discussion......Page 396
References......Page 397
Intelligibility of Time-Compressed Speech with Periodic and Aperiodic Insertions of Silence: Evidence for Endogenous Brain R......Page 399
37.1 Introduction......Page 400
37.2 Background......Page 401
37.3.2 Stimulus Preparation......Page 402
37.3.4 Instructions to Subjects......Page 403
37.3.5.2 Statistical Analysis......Page 405
37.4 Discussion......Page 406
37.4.2 Why Is the Intelligibility Curve U-Shaped?......Page 408
37.4.3 Condition x80: Why Does Intelligibility Deteriorate in the Aperiodic Condition?......Page 410
References......Page 411
The Representation of the Pitch of Vowel Sounds in Ferret Auditory Cortex......Page 412
38.1 Introduction......Page 413
38.2.2 Psychoacoustic Results......Page 414
38.3.1 Electrophysiological Methods......Page 415
38.3.2 Mapping Results (Sensitivity Maps)......Page 416
38.4.2 Neurometric Results......Page 417
38.5 Discussion and Conclusions......Page 419
References......Page 420
39.1 Introduction......Page 422
39.2 Acoustical Level: SNR-Based Speech Perception Measures (SII Approaches)......Page 424
39.3 Sensory Level/Peripheral Processing: (Example: Binaural Interaction)......Page 425
39.4 Central Level: A Microscopic Model of Speech Recognition......Page 428
References......Page 431
Effects of Peripheral Tuning on the Auditory Nerve’s Representation of Speech Envelope and Temporal Fine Structure Cues......Page 433
40.2.1 The Auditory Periphery Model......Page 434
40.2.2 Speech Intelligibility Metric (STMI)......Page 435
40.3 Test Speech Material......Page 437
40.4 Results......Page 438
40.6 Comment by Michael Heinz......Page 441
References......Page 442
41.1 Introduction......Page 443
41.2.1 Speech Contexts and the Test-Word Continuum......Page 445
41.2.3 Room Reflections......Page 446
41.2.5 Design......Page 447
41.2.6 Procedure......Page 448
41.3 Results......Page 449
41.4 Discussion......Page 450
References......Page 451
Identification of Perceptual Cues for Consonant Sounds and the Influence of Sensorineural Hearing Loss on Speech Perception......Page 452
42.1 Introduction......Page 453
42.2.2 Principle of 3D Approach......Page 454
42.2.3 Data Interpretation......Page 455
42.2.4 Perceptual Cues of Stop Consonants......Page 456
42.3.1 Diagnosis of Hearing Loss......Page 459
42.3.2.3 Procedure......Page 460
42.4.1 Hearing Loss......Page 461
42.4.2 Consonant Identification......Page 462
42.5 Discussion......Page 463
References......Page 465
Part VII - Auditory Scene Analysis......Page 466
A Comparative View on the Perception of Mistuning: Constraints of the Auditory Periphery......Page 467
43.2 Detecting Frequency Shifts of Pure Tones......Page 468
43.3.1 Mistuning Detection in Sine Phase Harmonic Complexes......Page 472
43.3.2 Mistuning Detection in Random Phase Harmonic Complexes......Page 473
43.3.3 Neural Basis of Mistuning Detection......Page 474
References......Page 476
Stability of Perceptual Organisation in Auditory Streaming......Page 478
44.2.1 Participants......Page 479
44.2.3 Procedure......Page 480
44.2.4 Results......Page 481
44.3.2 Stimulus Paradigm......Page 482
44.3.3 Results......Page 483
44.4.2 Stimulus Paradigm......Page 484
44.4.3 Results......Page 485
44.5 Discussion......Page 486
References......Page 488
45.1 Introduction......Page 489
45.3 Methods......Page 490
45.6 Methods......Page 492
45.7 Results and Discussion......Page 494
45.8 Conclusions......Page 495
References......Page 496
Rate Versus Temporal Code? A Spatio-Temporal Coherence Model of the Cortical Basis of Streaming......Page 497
46.2 Neurophysiological Basis of Stream Organization in AI......Page 498
46.3.1 Auditory Processing from Periphery to Cortex......Page 500
46.3.2 Coherence Analysis......Page 501
46.3.4.1 Varying Degrees of Synchrony......Page 502
46.3.4.2 Experiment I: Synchrony Overrides Sequential Grouping......Page 503
46.3.4.3 Experiment II: Sequential Capture Overrides Synchrony Detection......Page 504
References......Page 505
47.1 Introduction......Page 507
47.2 Auditory Streaming......Page 508
47.2.1.1 Methods......Page 509
47.2.2.1 Rationale and Method......Page 510
47.2.3.1 Rationale and Method......Page 512
47.2.3.2 Results......Page 513
47.3.1 A Correlate of the Continuity Illusion Obtained Using fMRI......Page 514
47.3.2.2 Results......Page 516
47.4 Summary......Page 517
References......Page 519
Perception of Concurrent Sentences with Harmonic or Frequency-Shifted Voiced Excitation: Performance of Human Listeners and......Page 520
48.1 Introduction......Page 521
48.2 Experiment......Page 522
48.3 Computational Models......Page 524
48.4 Modelling Studies: Results......Page 525
48.5 Modelling Studies: Limitations and Future Directions......Page 528
48.6 Summary and Conclusions......Page 529
References......Page 530
Part VIII - Novelty Detection, Attention and Learning......Page 531
49.1 Introduction......Page 532
49.2.1 Surgical Procedures, Acoustic Stimuli, and Electrophysiological Recording......Page 534
49.3 Results......Page 535
49.4 Discussion......Page 538
References......Page 540
50.1 Introduction......Page 542
50.2 Methods......Page 544
50.3 Results......Page 545
50.4 Discussion......Page 547
References......Page 549
51.1 Introduction......Page 551
51.2 Rapid Plasticity in A1 Receptive Fields......Page 553
51.2.1 STRF Plasticity in A1 During Aversive Tone Detection and Discrimination Tasks......Page 554
51.2.2 Contrasting Effects of Aversive and Appetitive Tasks......Page 555
51.3.1 PFC Responses During Aversive (or Conditioned Avoidance) Tasks......Page 556
51.4 Relationship Between A1 and PFC Responses......Page 560
51.4.1.1 Within PFC and A1 Correlations......Page 561
51.4.2 Microstimulation in PFC Modulates Receptive Fields in A1......Page 562
51.5 Summary and Discussion......Page 564
References......Page 565
52.1 Introduction......Page 567
52.2.1 Method......Page 568
52.2.2 Results......Page 569
52.3 Experiment 2......Page 570
52.3.2 Results......Page 571
52.5.1 Repeated Exposure Produced Learning of Noise Samples......Page 572
52.5.3 Constraints for Neural Mechanisms......Page 574
References......Page 575
Role of Primary Auditory Cortex in Acoustic Orientation and Approach-to-Target Responses......Page 576
53.2 Methods......Page 577
53.2.2 Inactivation of the Auditory Cortex......Page 578
53.2.4 Data Analysis......Page 579
53.3.2 Approach-to-Target Sound Localization......Page 580
53.4 Discussion and Conclusions......Page 585
53.5 Comment by Catherine Carr......Page 586
References......Page 587
Part IX - Hearing Impairment......Page 589
54.1 Introduction......Page 590
54.2.2 Results and Discussion......Page 592
54.3.2 Results and Discussion......Page 595
54.4.1 Method......Page 596
54.4.2 Results and Discussion......Page 597
54.5 Summary and Conclusion......Page 598
References......Page 599
55.1 Introduction......Page 601
55.2.1 Experimental Data......Page 603
55.2.2 Model Description......Page 604
55.2.4 Application to Earlier Results......Page 605
55.3 Results......Page 606
55.4 Discussion......Page 608
55.5 Conclusions......Page 609
References......Page 610
Across-Fiber Coding of Temporal Fine-Structure: Effects of Noise-Induced Hearing Loss on Auditory-Nerve Responses......Page 612
56.2.1 Experimental Procedures......Page 613
56.2.3 Within-CF and Across-CF Temporal Analyses......Page 614
56.3 Results......Page 616
References......Page 620
57.1 Introduction......Page 622
57.2.1.1 Psychoacoustic Measures......Page 623
57.2.1.3 Listeners......Page 624
57.3.1 Normal Data and Model......Page 625
57.3.2.1 Profile 1 (Participant ECr)......Page 626
57.3.2.2 Profile 2 (Participant JEV)......Page 627
57.3.2.3 Profile 3 (Participant JJo)......Page 629
57.4 Discussion......Page 630
References......Page 631
Index......Page 632