The Doppler Effect can be thought of as the change in frequency of a wave for an observer moving relative to the source of the wave. In radar, it is used to measure the velocity of detected objects. This highly practical resource provides thorough working knowledge of the micro-Doppler effect in radar, including its principles, applications and implementation with MATLAB codes. The book presents code for simulating radar backscattering from targets with various motions, generating micro-Doppler signatures, and analyzing the characteristics of targets. In this title, professionals will find detailed descriptions of the physics and mathematics of the Doppler and micro-Doppler effect. The book provides a wide range of clear examples, including an oscillating pendulum, a spinning and precession heavy top, rotating rotor blades of a helicopter, rotating wind-turbine blades, a person walking with swinging arms and legs, a flying bird, and movements of quadruped animals.
Author(s): Victor C. Chen
Series: Artech House Radar Library
Edition: Har/DVD
Publisher: Artech House
Year: 2010
Language: English
Pages: 290
Tags: Приборостроение;Радиолокация;
The Micro-Doppler Effect in Radar......Page 2
Contents......Page 6
Preface......Page 12
1 Introduction......Page 16
1.1 Doppler Effect......Page 17
1.2 Relativistic Doppler Effect and Time Dilation......Page 19
1.3 Doppler Effect Observed in Radar......Page 22
1.4 Estimation and Analysis of Doppler Frequency Shifts......Page 25
1.5 Cramer-Rao Bound of the Doppler Frequency Estimation......Page 32
1.6 The Micro-Doppler Effect......Page 33
1.8 Estimation and Analysis of Micro-Doppler Frequency Shifts......Page 35
1.8.1 Instantaneous Frequency Analysis......Page 36
1.8.2 Joint Time-Frequency Analysis......Page 38
1.9 The Micro-Doppler Signature of Objects......Page 41
References......Page 43
Appendix 1A MATLAB Source Codes......Page 47
2.1 Rigid Body Motion......Page 50
2.1.1 Euler Angles......Page 51
2.1.2 Quaternion......Page 57
2.1.3 Equations of Motion......Page 59
2.2 Nonrigid Body Motion......Page 62
2.3.1 Radar Cross Section of a Target......Page 65
2.3.2 RCS Prediction Methods......Page 68
2.3.3 EM Scattering from a Body with Motion......Page 69
2.4.1 Micro-Doppler Induced by a Target with Micro Motion......Page 71
2.4.2 Vibration-Induced Micro-Doppler Shift......Page 75
2.4.3 Rotation-Induced Micro-Doppler Shift......Page 78
2.4.4 Coning Motion-Induced Micro-Doppler Shift......Page 81
2.5 Bistatic Micro-Doppler Effect......Page 86
2.6 Multistatic Micro-Doppler Effect......Page 92
References......Page 94
Appendix 2A......Page 96
Appendix 2B MATLAB Source Codes......Page 98
3 The Micro-Doppler Effect of the Rigid Body Motion......Page 108
3.1 Pendulum Oscillation......Page 109
3.1.1 Modeling Nonlinear Motion Dynamic of a Pendulum......Page 110
3.1.2 Modeling RCS of a Pendulum......Page 116
3.1.3 Radar Backscattering from an Oscillating Pendulum......Page 117
3.2 Helicopter Rotor Blades......Page 120
3.2.1 Mathematic Model of Rotating Rotor Blades......Page 122
3.2.2 RCS Model of Rotating Rotor Blades......Page 127
3.2.3 PO Facet Prediction Model......Page 129
3.2.4 Radar Backscattering from Rotor Blades......Page 131
3.2.5 Micro-Doppler Signatures of Rotor Blades......Page 135
3.2.7 Analysis and Interpretation of the Micro-Doppler Signature of Rotor Blades......Page 138
3.3 Spinning Symmetric Top......Page 142
3.3.1 Force-Free Rotation of a Symmetric Top......Page 145
3.3.2 Torque-Induced Rotation of a Symmetric Top......Page 147
3.3.3 RCS Model of a Symmetric Top......Page 148
3.3.4 Radar Backscattering from a Symmetric Top......Page 150
3.3.6 Analysis and Interpretation of the Micro-Doppler Signature of a PrecessionTop......Page 151
3.4 Wind Turbines......Page 154
3.4.2 Analysis and Interpretation of the Micro-Doppler Signature of Wind Turbines......Page 155
References......Page 156
Appendix 3A MATLAB Source Codes......Page 158
4 The Micro-Doppler Effect of the Nonrigid Body Motion......Page 172
4.1.1 Human Walking......Page 174
4.1.2 Description of the Periodic Motion of Human Walking......Page 176
4.1.4 Human Body Segment Parameters......Page 177
4.1.5 Human Walking Model Derived from Empirical Mathematical Parameterizations......Page 179
4.1.6 Capturing Human Motion Kinematic Parameters......Page 192
4.1.7 Three-Dimensional Kinematic Data Collection......Page 197
4.1.9 Radar Backscattering from a Walking Human......Page 199
4.1.10 Human Movement Data Processing......Page 202
4.1.11 Human Movement–Induced Radar Micro-Doppler Signatures......Page 204
4.2 Bird Wing Flapping......Page 209
4.2.1 Bird Wing Flapping Kinematics......Page 210
4.2.2 Doppler Observations of the Bird Wing Flapping......Page 213
4.2.3 Simulation of the Bird Wing Flapping......Page 214
4.3 Quadrupedal Animal Motion......Page 217
4.3.1 Modeling of Quadrupedal Locomotion......Page 219
4.3.3 Summary......Page 220
References......Page 222
Appendix 4A MATLAB Source Codes......Page 224
Appendix 4B MATLAB Source Codes......Page 253
5 Analysis and Interpretation of Micro-Doppler Signatures......Page 262
5.1 Biological Motion Perception......Page 263
5.2 Decomposition of Biological Motion......Page 265
5.2.2 Decomposition of Micro-Doppler Signatures in the Joint Time-Frequency Domain......Page 266
5.2.3 Physical Component–Based Decomposition......Page 267
5.3 Extraction of Features from Micro-Doppler Signatures......Page 271
5.4 Estimation of Kinematic Parameters from Micro-Doppler Signatures......Page 272
5.5 Identifying Human Movements......Page 277
5.5.1 Features Used for Identifying Human Movements......Page 278
5.5.2 Anomalous Human Behavior......Page 279
5.5.3 Summary......Page 281
References......Page 282
6.1 Summary......Page 286
6.2 Challenges......Page 287
6.2.2 Feature Extraction and Target Identification Based on Micro-Doppler Signatures......Page 288
6.3.1 Multistatic Micro-Doppler Analysis......Page 290
6.3.3 Aural Methods for Micro-Doppler–Based Discrimination......Page 291
6.3.4 Through-the-Wall Micro-Doppler Signatures......Page 292
References......Page 293
About the Author......Page 296
Index......Page 298