Author(s): Helena Rasiowa, Roman Sikorski
Publisher: PWN
Year: 1963
Language: English
Commentary: complete (indices and toc added)
Pages: 517
City: Warszawa
Ttitle page......Page 1
Preface......Page 3
§1. Sets, mappings, Cartesian products......Page 9
§2. Topological spaces......Page 11
§3. Equivalence relations......Page 18
§4. Abstract algebras......Page 20
§5. Ordered sets......Page 30
§6. Lattices......Page 32
§7. Infinite joins and meets......Page 36
§8. Filters and ideals......Page 42
§9. Distributive lattices......Page 46
§10. Complement and pseudo-complement......Page 50
§11. Relative pseudo-complement. Difference......Page 52
§12. Relatively pseudo-complemented lattices. Pseudo-Boolean algebras......Page 56
§13. Filters in relatively pseudo-complemented lattices......Page 61
§1. Definition and elementary properties......Page 66
§2. Subalgebras......Page 71
§3. Boolean homomorphisms......Page 73
§4. The two-element Boolean algebra......Page 75
§5. Filters and ideals......Page 76
§6. Relativization......Page 77
§7. Products of Boolean algebras......Page 79
§8. The Stone spaces of Boolean algebras......Page 81
§9. Representations preserving some infinite joins and meets......Page 84
§10. Minimal extensions of Boolean algebras......Page 86
§11. The Cantor discontinuum......Page 89
§1. Definition and elementary properties......Page 91
§2. Relativization to principal ideals......Page 93
§3. Topological homomorphisms and isomorphisms. Interior mappings......Page 95
§4. Extensions and imbeddings of topological Boolean algebras......Page 98
§6. Strongly compact spaces......Page 99
§6. Metric spaces......Page 100
§7. A fundamental lemma on metric spaces......Page 103
§8. Finite topological Boolean algebras......Page 107
§9. Cartesian products of topological spaces......Page 111
§10. A representation theorem for enumerable topological Boolean algebras......Page 115
§11. Complete spaces......Page 116
§12. Quotient algebras......Page 118
§13. Products of topological Boolean algebras. Direct unions of topological spaces......Page 119
§1. Preliminaries......Page 121
§2. Pseudo-Boolean homomorphisms and isomorphisms......Page 125
§3. Representation theorems......Page 126
§4. Finite pseudo-Boolean algehras......Page 128
§5. Dense elements......Page 129
§6. Regular elements......Page 131
§7. Infinite joins and meets......Page 133
§8. Relativization......Page 136
§9. Imbeddings and extensions of pseudo-Boolean algebras......Page 137
§10. Enumerable pseudo-Boolean algebras......Page 139
§11. Products of pseudo-Boolean algebras......Page 140
§1. The concept of formalized theories......Page 142
§2. Operations on expressions......Page 149
§3. Formalized languages of elementary mathematical theories......Page 150
§4. Interpretations......Page 158
§5. The intuitive concept of propositional tautologies......Page 161
§6. Formalized languages of propositional calculi......Page 164
§7. The intuitive concept of predicate tautologies......Page 168
§8. Rules of inference......Page 171
§9. Formal proofs......Page 177
§10. The consequence operations. Formalized deductive systems and theories......Page 179
§11. The general notion of logic. The classieal logic......Page 185
§12. Axioms for equality......Page 188
§13. Examples of elementary formalized theories based on classical logic......Page 190
§14. Some fundamental metamathematical notions......Page 199
§15. Definitions in formalized theories......Page 204
§1. The algebra of formulas......Page 207
§2. The algebra of formulas of a formalized language of zero order. The interpretation of formulas as mappings......Page 208
§3. The algebra of terms. Realizations of terms......Page 213
§4. The algebra and the Q-algebra of a formalized language of the first order......Page 217
§5. The I-algebra of a formalized language of the first order......Page 220
§6. Realizations of a formalized language of the first order......Page 223
§7. Canonical realizations of a formalized language of the first order......Page 232
§8. Products of realizations......Page 238
§9. The algebra of open formulas......Page 241
§10. The algebra of formalized theory......Page 242
§11. The Q-algebra of a formalized theory of the first order......Page 249
§1. Preliminaries......Page 254
§2. The completeness of the propositional calculi......Page 257
§3. Examples of propositional tautologies......Page 258
§4. The algehra of the two-valued propositional calculus......Page 259
§5. Normal forms......Page 261
§6. Diagrams of formulas......Page 262
§7. Consistency and existence of models......Page 268
§8. Deduction theorems......Page 270
§9. The connection between theories and filters......Page 271
§10. Maximal and prime theories......Page 273
§11. Effectivity problems......Page 275
§1. Preliminaries......Page 277
§2. Models......Page 279
3. Canonical models. The consistency and existence of models......Page 284
§4. Semantic models......Page 286
§5. The existence of semantic enumerable models for enumerable theories......Page 290
§6. The completeness of the predicate calculi. Examples of tautologies......Page 293
§7. Diagrams of formulas......Page 297
§8. Rich theories......Page 304
§9. The existence of semantic models for arbitrary consistent theories......Page 308
§10. The deduction theorems......Page 311
§11. The connection between theories and filters......Page 312
§12. Maximal and prime theories......Page 315
§14. The inessentiality of definitions......Page 322
§15. Open theories......Page 324
§10. The prenex form......Page 328
§17. The elimination of quantifiers from the axioms of a theory......Page 332
§18. Products of semantic realizations modulo a prime filter......Page 336
§19. Cardinals of models......Page 339
§20. Non-enumerable arithmetic and enumerable set theory......Page 347
921. Effectivity problems......Page 351
§22. Canonical semantic models. Representation problems for Q-algebras of theories......Page 352
§23. A topological characterization of open theories......Page 360
§24. The algebra of the two-valued predicate ealeulus......Page 363
§25. The deduction theorem for open theories......Page 365
§26. Herbrand disjunctions......Page 366
§1. Introduction......Page 374
§2. Preliminaries......Page 379
§3. The completeness theorem......Page 383
§4. Examples of intuitionistic propositional tautologies......Page 386
§5. Connection between tautologies and intuitionistic tautologies......Page 388
§6. A theorem on intuitionistically derivable disjunctions......Page 392
§7. The algebra of the intuitionistic propositional calculus......Page 393
§8. Consistency and the existence of models......Page 395
§9. Deduction theorems......Page 397
§10. Connection between theories and filters......Page 398
§11. Maximal theories......Page 400
§12. Prime theories......Page 401
§13. Connection between classical and intuitionistic theories......Page 406
§1. Preliminaries......Page 409
§2. Models......Page 412
§3. Canonical models. Consistency and the existence of modela......Page 416
§4. The completeness of intuitionistic predicate ealculi......Page 420
§5. The algebra of the intuitionistic predicate calculus......Page 421
§6. Examples of intuitionistic tautologies......Page 423
§7. The connection between tautologies and intuitionistic tautologies......Page 426
§8. Theorem on intuitionistically derivable disjunctious and existential formulas......Page 428
§9. The deduction theorems......Page 430
§10. Connection between theories and filters......Page 431
§11. Maximal theories......Page 434
§12. Prime theories......Page 436
§13. Constructive theories......Page 437
§14. Cancelation of initial quantifiers in formulas of U-theory......Page 443
§15. Theories with the sign of equality......Page 444
§16. Open intuitionistic theories......Page 446
§17. The deduction theorem for open intuitionistic theories......Page 450
§18. A theorem on the extension of topological realizations......Page 451
§19. Elimination of initial quantifiers from axioms of an intuitionistic theory......Page 453
§1. Introduction......Page 458
§2. The positive logic......Page 459
§3. Positive theories of zero order......Page 461
§4. The positive propositional calculus......Page 463
§5. Positive theories of the first order......Page 464
§6. The positive predicate calculus......Page 466
§7. The modal logic......Page 467
§8. Modal theories of zero order......Page 471
§9. The modal propositional calculus......Page 475
§10. Modal theories of the first order......Page 479
§11. The modal predicate calculus......Page 484
Bibliograpby......Page 487
List of symbols......Page 501
Author index......Page 503
Subject index......Page 505