This volume comprises an imaginative collection of pieces created in tribute to Martin Gardner. Perhaps best known for writing Scientific American's "Mathematical Games" column for years, Gardner used his personal exuberance and fascination with puzzles and magic to entice a wide range of readers into a world of mathematical discovery. This tribute therefore contains pieces as widely varied as Gardner's own interests, ranging from limericks to lengthy treatises, from mathematical journal articles to personal stories. This book makes a charming and unusual addition to any personal library. Selected papers: - The Odyssey of the Figure Eight Puzzle by Stewart Coffin - Block-Packing Jambalaya by Bill Cutler - O'Beirne's Hexiamond by Richard K. Guy - Biblical Ladders by Donald E. Knuth - Three Limericks: On Space, Time and Speed by Tim Rowett.
Author(s): Elwyn Berlekamp and Tom Rodgers
Year: 1999
Language: English
Pages: 254
Tags: Математика;Популярная математика;
Contents......Page 1
Forward......Page 5
Martin Gardner: A “Documentary”......Page 8
SCENE I - The year is 2050 A.D.......Page 18
SCENE II - One Hundred Years Later......Page 21
SCENE III - A Hundred Years Later......Page 22
A Truth Learned Early......Page 23
Martin Gardner = Mint! Grand! Rare!......Page 24
Three Limericks — On Space, Time, and Speed......Page 26
A Maze with Rules......Page 28
Biblical Ladders......Page 30
Card Game Trivia......Page 36
Creative Puzzle Thinking......Page 37
Number Play, Calculators,
and Card Tricks:
Mathemagical Black Holes......Page 41
The Sisyphus String: 123......Page 42
What Is aMathemagical Black Hole?......Page 43
Words to Numbers: 4......Page 44
Narcissistic Numbers: 153......Page 45
Card Tricks, Even......Page 46
Fibonacci Numbers: Classic Results as Black Holes......Page 48
Unsolved Problems as Black Holes......Page 50
Close......Page 51
Introduction......Page 52
Easy Problems......Page 53
Medium Problems......Page 56
Hard Problems......Page 59
Solutions to Easy Problems......Page 64
Solutions toMedium Problems......Page 66
Solutions to Hard Problems......Page 72
Sources......Page 81
O’Beirne’s Hexiamond......Page 84
Japanese Tangram:
The Sei Shonagon Pieces......Page 96
How a Tangram Cat Happily Turns into the Pink Panther......Page 98
Polly’s Flagstones......Page 102
Those Peripatetic Pentominoes......Page 105
Self-Designing Tetraflexagons......Page 115
Square Window......Page 117
Cross Plus-Slit......Page 120
Square Slash-Slit......Page 123
Possibilities......Page 124
The Odyssey of the Figure Eight Puzzle......Page 125
Metagrobolizers ofWire......Page 128
The Bermuda Triangle Puzzle......Page 130
The Nightmare Puzzle......Page 131
The Beginning......Page 132
The First Theories......Page 134
A Painful Paradigm Shift......Page 135
The Hourglass Letters......Page 136
Hein and the Horse’s Mouth......Page 137
Final Thoughts......Page 138
Binomial Puzzle......Page 141
Magic Die......Page 144
The Nine Color Puzzle......Page 146
1. Additional Comments......Page 152
3. The “No Two in the Same Plane” Rule......Page 153
4. Determination of the 133,105 Possible Dicube Color Combinations......Page 154
6. Identification and Separation into Disjoint Sets......Page 155
Twice: A Sliding Block Puzzle......Page 157
The Puzzle......Page 158
Planar Burrs......Page 159
Block-Packing Jambalaya......Page 162
8. No Holes, Limited Number of Piece Types......Page 163
9. No Holes, PiecesMostly Different......Page 164
10. Holes, Pieces the Same or Similar......Page 165
12. Miscellaneous......Page 166
References......Page 167
Background......Page 168
Method......Page 169
Proposed Developments......Page 171
Information Specific to This Object......Page 172
Detailed Puzzle Classification......Page 173
A Curious Paradox......Page 180
A Powerful Procedure for Proving
Practical Propositions......Page 181
Misfiring Tasks......Page 183
Drawing de Bruijn Graphs......Page 186
Computer Analysis of Sprouts......Page 188
Our Results......Page 190
Strange New Life Forms: Update......Page 191
Multiple Silhouettes......Page 202
HollowMazes......Page 205
Some Diophantine Recreations......Page 208
A Simple Age Problem......Page 209
Ass and Mule Problems......Page 211
Selling Different Amounts at the Same Price Yielding the
Same......Page 215
References......Page 223
Who Wins Misère Hex?......Page 225
An Update on Odd Neighbors and
Odd Neighborhoods......Page 229
The Developer’s Dilemma......Page 230
The Problem......Page 233
Mirrors on the Corners of a Regular Polygon......Page 235
Conclusion......Page 238
How Random Are 3x + 1 Function Iterates?......Page 240
13. Introduction......Page 241
14. Repeated Random Walk Model......Page 244
15. Branching Random Walk Model......Page 247
16. Distribution of 3x + 1 Trees......Page 249
References......Page 252