See how math's infinite mysteries and beauty unfold in this captivating educational book!
Discover more than 85 of the most important mathematical ideas, theorems, and proofs ever devised with this beautifully illustrated book. Get to know the great minds whose revolutionary discoveries changed our world today.
You don't have to be a math genius to follow along with this book! This brilliant book is packed with short, easy-to-grasp explanations, step-by-step diagrams, and witty illustrations that play with our ideas about numbers.
What is an imaginary number? Can two parallel lines ever meet? How can math help us predict the future? All will be revealed and explained in this encyclopedia of mathematics.
It's as easy as 1-2-3!
The Math Book tells the exciting story of how mathematical thought advanced through history. This diverse and inclusive account will have something for everybody, including the math behind world economies and espionage.
This book charts the development of math around the world, from ancient mathematical ideas and inventions like prehistoric tally bones through developments in medieval and Renaissance Europe. Fast forward to today and gain insight into the recent rise of game and group theory.
Delve in deeper into the history of math:
- Ancient and Classical Periods 6000 BCE - 500 CE
- The Middle Ages 500 - 1500
- The Renaissance 1500 - 1680
- The Enlightenment 1680 - 1800
- The 19th Century 1800 - 1900
- Modern Mathematics 1900 - Present
The Series Simply Explained
With over 7 million copies sold worldwide to date, The Math Book is part of the award-winning Big Ideas Simply Explained series from DK Books. It uses innovative graphics along with engaging writing to make complex subjects easier to understand.
Author(s): DK
Series: Big Ideas Simply Explained
Publisher: DK
Year: 2019
Language: English
Pages: 352
HOW TO USE THIS EBOOK
INTRODUCTION
ANCIENT AND CLASSICAL PERIODS 6000 BCE–500 CE
Numerals take their places • Positional numbers
The square as the highest power • Quadratic equations
The accurate reckoning for inquiring into all things • The Rhind papyrus
The sum is the same in every direction • Magic squares
Number is the cause of gods and daemons • Pythagoras
A real number that is not rational • Irrational numbers
The quickest runner can never overtake the slowest • Zeno’s paradoxes of motion
Their combinations give rise to endless complexities • The Platonic solids
Demonstrative knowledge must rest on necessary basic truths • Syllogistic logic
The whole is greater than the part • Euclid’s Elements
Counting without numbers • The abacus
Exploring pi is like exploring the Universe • Calculating pi
We separate the numbers as if by some sieve • Eratosthenes’ sieve
A geometrical tour de force • Conic sections
The art of measuring triangles • Trigonometry
Numbers can be less than nothing • Negative numbers
The very flower of arithmetic • Diophantine equations
An incomparable star in the firmament of wisdom • Hypatia
The closest approximation of pi for a millennium • Zu Chongzhi
THE MIDDLE AGES 500–1500
A fortune subtracted from zero is a debt • Zero
Algebra is a scientific art • Algebra
Freeing algebra from the constraints of geometry • The binomial theorem
Fourteen forms with all their branches and cases • Cubic equations
The ubiquitous music of the spheres • The Fibonacci sequence
The power of doubling • Wheat on a chessboard
THE RENAISSANCE 1500–1680
The geometry of art and life • The golden ratio
Like a large diamond • Mersenne primes
Sailing on a rhumb • Rhumb lines
A pair of equal-length lines • The equals sign and other symbology
Plus of minus times plus of minus makes minus • Imaginary and complex numbers
The art of tenths • Decimals
Transforming multiplication into addition • Logarithms
Nature uses as little as possible of anything • The problem of maxima
The fly on the ceiling • Coordinates
A device of marvellous invention • The area under a cycloid
Three dimensions made by two • Projective geometry
Symmetry is what we see at a glance • Pascal’s triangle
Chance is bridled and governed by law • Probability
The sum of the distance equals the altitude • Viviani’s triangle theorem
The swing of a pendulum • Huygens’s tautochrone curve
With calculus I can predict the future • Calculus
The perfection of the science of numbers • Binary numbers
THE ENLIGHTENMENT 1680–1800
To every action there is an equal and opposite reaction • Newton’s laws of motion
Empirical and expected results are the same • The law of large numbers
One of those strange numbers that are creatures of their own • Euler’s number
Random variation makes a pattern • Normal distribution
The seven bridges of Königsberg • Graph theory
Every even integer is the sum of two primes • The Goldbach conjecture
The most beautiful equation • Euler’s identity
No theory is perfect • Bayes’ theorem
Simply a question of algebra • The algebraic resolution of equations
Let us gather facts • Buffon’s needle experiment
Algebra often gives more than is asked of her • The fundamental theorem of algebra
THE 19TH CENTURY 1800–1900
Complex numbers are coordinates on a plane • The complex plane
Nature is the most fertile source of mathematical discoveries • Fourier analysis
The imp that knows the positions of every particle in the Universe • Laplace’s demon
What are the chances? • The Poisson distribution
An indispensable tool in applied mathematics • Bessel functions
It will guide the future course of science • The mechanical computer
A new kind of function • Elliptic functions
I have created another world out of nothing • Non-Euclidean geometries
Algebraic structures have symmetries • Group theory
Just like a pocket map • Quaternions
Powers of natural numbers are almost never consecutive • Catalan’s conjecture
The matrix is everywhere • Matrices
An investigation into the laws of thought • Boolean algebra
A shape with just one side • The Möbius strip
The music of the primes • The Riemann hypothesis
Some infinities are bigger than others • Transfinite numbers
A diagrammatic representation of reasonings • Venn diagrams
The tower will fall and the world will end • The Tower of Hanoi
Size and shape do not matter, only connections • Topology
Lost in that silent, measured space • The prime number theorem
MODERN MATHEMATICS 1900–PRESENT
The veil behind which the future lies hidden • 23 problems for the 20th century
Statistics is the grammar of science • The birth of modern statistics
A freer logic emancipates us • The logic of mathematics
The Universe is four-dimensional • Minkowski space
Rather a dull number • Taxicab numbers
A million monkeys banging on a million typewriters • The infinite monkey theorem
She changed the face of algebra • Emmy Noether and abstract algebra
Structures are the weapons of the mathematician • The Bourbaki group
A single machine to compute any computable sequence • The Turing machine
Small things are more numerous than large things • Benford’s law
A blueprint for the digital age • Information theory
We are all just six steps away from each other • Six degrees of separation
A small positive vibration can change the entire cosmos • The butterfly effect
Logically things can only partly be true • Fuzzy logic
A grand unifying theory of mathematics • The Langlands Program
Another roof, another proof • Social mathematics
Pentagons are just nice to look at • The Penrose tile
Endless variety and unlimited complication • Fractals
Four colours but no more • The four-colour theorem
Securing data with a one-way calculation • Cryptography
Jewels strung on an as-yet invisible thread • Finite simple groups
A truly marvellous proof • Proving Fermat’s last theorem
No other recognition is needed • Proving the Poincaré conjecture
DIRECTORY
GLOSSARY
CONTRIBUTORS
QUOTATIONS
ACKNOWLEDGEMENTS
COPYRIGHT