The theme of this unique work, the logarithmic integral, lies athwart much of twentieth century analysis. It is a thread connecting many apparently separate parts of the subject, and is a natural point at which to begin a serious study of real and complex analysis. Professor Koosis' aim is to show how, from simple ideas, one can build up an investigation that explains and clarifies many different, seemingly unrelated problems; to show, in effect, how mathematics grows. The presentation is straightforward, so this, the first of two volumes, is self-contained, but more importantly, by following the theme, Professor Koosis has produced a work that can be read as a whole. He has brought together here many results, some new and unpublished, making this a key reference for graduate students and researchers.
Author(s): Paul Koosis
Series: Cambridge Studies in Advanced Mathematics 12
Publisher: CUP
Year: 1992
Language: English
Pages: 625
Cover......Page 1
Title......Page 4
Copyright......Page 5
Notice......Page 8
Contents......Page 10
Preface......Page 16
Introduction......Page 18
I Jensen's formula......Page 20
Problem 1......Page 24
A The theorem......Page 26
B The pointwise approximate identity property of the Poisson kernel......Page 29
Problem 2......Page 32
A Hadamard factorization......Page 34
B Characterization of the set of zeros of an entire function of exponential type. Lindelof's theorems......Page 38
Problem 3......Page 41
C Phragmbn-Lindelof theorems......Page 42
D The Paley-Wiener theorem......Page 49
E Introduction to the condition......Page 56
1. The representation......Page 58
2. Digression on the a.e. existence of boundary values......Page 62
1 Functions without zeros in 3z > 0......Page 66
2 Convergence of f?.(log -If(x)I/(1+x2))dx......Page 68
3 Taking the zeros in 3z > 0 into account. Use of Blaschke products......Page 71
H Levinson's theorem on the density of the zeros ^g......Page 77
1 Kolmogorov's theorem on the harmonic conjugate......Page 78
2 Functions with only real zeros......Page 84
3 The zeros not necessarily real......Page 88
Problem 5......Page 95
1 Definition of the classes ^7({Mn})......Page 97
2 The function T(r). Carleman's criterion......Page 99
1 Definition of the sequence {Mj. Its relation to {Mn} and T(r)......Page 102
2 Necessity of Carleman's criterion and the characterization of quasianalytic classes......Page 108
C Scholium. Direct establishment of the equivalence between the three conditions......Page 111
Problem 6......Page 115
D The Paley-Wiener construction of entire functions of small exponential type decreasing fairly rapidly along the real axis......Page 116
E Theorem of Cartan and Gorny on equality of ''({M}) and W an algebra......Page 121
Problem 7......Page 122
V The moment problem on the real line......Page 128
A Characterization of moment sequences. Method based on extension of positive linear functionals......Page 129
B Scholium. Determinantal criterion for to be a moment sequence......Page 135
1 Carleman's sufficient condition......Page 145
2 A necessary condition......Page 147
Problem 8......Page 150
1 The criterion with Riesz' function R(z)......Page 151
2 Derivation of the results in ? from the above one......Page 161
VI Weighted approximation on the real line......Page 164
1 Criterion in terms of finiteness of ((z)......Page 166
2 A computation......Page 169
3 Criterion in terms of J?. (log Sl;(t)/(1 + t2) )dt......Page 172
1 Criterion in terms of f "'. (log W (x)/(1 + x2))dx......Page 177
2 Description of II II w limits of polynomials when log W (t) dt < 1+t2 00......Page 179
3 Strengthened version of Akhiezer's criterion. Pollard's theorem......Page 182
C Mergelian's criterion really more general in scope than Akhiezer's. Example......Page 184
D Some partial results involving the weight W explicitly.......Page 188
1 Equivalence with weighted approximation by certain entire function of exponential type. The collection 8.......Page 190
2 The functions c14(z) and WA(z). Analogues of Mergelian's and Akhiezer's theorems......Page 192
3 Scholium. P61ya's maximum density......Page 194
4 The analogue of Pollard's theorem......Page 199
F L. de Branges' description of extremal unit measures orthogonal to the ei2"/ W(x), - A < 2 < A, when 'A is not dense in %w(18)......Page 203
1 Three lemmas......Page 206
2 De Branges' theorem......Page 209
3 Discussion of the theorem......Page 217
4 Scholium. Krein's functions......Page 222
Problem 10......Page 228
G Weighted approximation with LP norms......Page 229
H Comparison of weighted approximation by polynomials and by functions in 8A......Page 230
1 Characterization of the functions in cw(A +)......Page 231
2 Sufficient conditions for equality of 'w(0) and 'w(0 +)......Page 238
3 Example of a weight W with 1w(0) ''w(0 +) # W w(1d)......Page 248
VII How small can the Fourier transform of a rapidly decreasing non-zero function be?......Page 252
1 Some shop math......Page 253
2 Beurling's gap theorem......Page 255
Problem 11......Page 257
3 Weights which increase along the positive real axis......Page 258
4 Example on the comparison of weighted approximation by polynomials and that by exponential sums......Page 262
5 Levinson's theorem......Page 266
B The Fourier transform vanishes on a set of positive measure Beurling's theorems......Page 269
1 What is harmonic measure?......Page 270
2 Beurling's improvement of Levinson's theorem......Page 284
3 Beurling's study of quasianalyticity......Page 294
4 The spaces 5p(-90), especially .91(-90)......Page 299
5 Beurling's quasianalyticity theorem for LP approximation by functions in 9'p(90)......Page 311
C Kargaev's example......Page 324
1 Two lemmas......Page 325
2 The example......Page 331
D Volberg's work......Page 335
Problem 12......Page 337
1 The planar Cauchy transform......Page 338
Problem 13......Page 341
2 The function M(v) and its Legendre transform......Page 342
Problem 14(a)......Page 346
Problem 14(c)......Page 355
3 Dynkin's extension of F(e') to { Iz 15 1) with control on I FZ{z)1......Page 357
4 Material about weighted planar approximation by polynomials......Page 362
5 Volberg's theorem on harmonic measures......Page 367
6 Volberg's theorem on the logarithmic integral......Page 375
7 Scholium. Levinson's log log theorem......Page 393
VIII Persistence of the form dx/(1 + x2)......Page 403
A The set E has positive lower uniform density......Page 405
1 Harmonic measure for -9......Page 406
2 Green's function and a Phragmen-Lindelof function for -9......Page 419
Problem 16......Page 423
Problem 17(a)......Page 430
Problem 17(b)......Page 432
3 Weighted approximation on the sets E......Page 443
Problem 18......Page 451
4 What happens when the set E is sparse......Page 453
Problem 19......Page 462
B The set E reduces to the integers......Page 464
Problem 20......Page 465
1 Using certain sums as upper bounds for integrals corresponding to them......Page 466
2 Construction of certain intervals containing the zeros of p(x)......Page 473
3 Replacement of the distribution n(t) by a continuous one......Page 487
4 Some formulas......Page 492
5 The energy integral......Page 497
Problem 22......Page 503
6 A lower estimate for 1.11 o log I 1- (x2/t2)Idp(t)(dx/x2)......Page 506
7 Effect of taking x to be constant on each of the intervals Jk......Page 511
8 An auxiliary harmonic function......Page 514
Problem 23......Page 516
9 Lower estimate for f n f o log 11- (x2/t2)Idp(t)(dx/x2)......Page 525
10 Return to polynomials......Page 535
Problem 24......Page 537
11 Weighted polynomial approximation on 7L......Page 541
C Harmonic estimation in slit regions......Page 544
1 Some relations between Green's function and harmonic measure for our domains .9......Page 545
2 An estimate for harmonic measure......Page 559
Problem 26......Page 564
3 The energy integral again......Page 567
4 Harmonic estimation in 9......Page 572
5 When majorant is the logarithm of an entire function of exponential type......Page 574
Problem 27......Page 580
Problem 28......Page 587
1 Brennan's improvement, for M(v)/v1/2 monotone increasing......Page 589
2 Discussion......Page 593
3 Extension to functions F(ei,) in L1(-rr,n)......Page 601
4 Lemma about harmonic functions......Page 609
Bibliography for volume 1......Page 615
Index......Page 619
Contents of volume II......Page 622