The Lie bialgebra structures on the Witt and Virasoro algebras

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): Siu-Hung Ng
Series: PhD thesis at Rutgers, The State University of New Jersey
Year: 1997

Language: English

A b s tr a c t ...................................................................................................................................... ii
A cknow ledgem ents .............................................................................................................. iii
D edication ............................................................................................................................... iv
1 . Introduction ...................................................................................................................... 1
2 . Q uantization of Lie b ia lg e b ra s ................................................................................. 4
2.1. Hopf algebras ........................................................................................................... 4
2.2. Quantization of Lie algebras ................................................................................ 8
2.3. Lie bialgebras ........................................................................................................... 10
2.4. Quasitriangular Hopf algebras ............................................................................ 12
3. Cohomology of graded Lie a lg e b ra s ................................................................... 16
3.1. Graded Lie alg eb ras ............................................................................................. 16
3.2. p-modules ................................................................................................................. 18
3.3. Duality of homology and cohomology of Lie algebras .................................... 22
3.4. Universal central extension of Lie subalgebras of V containing W . . . . 26
4. Lie bialgebra structures on the W itt and V irasoro a lg e b ra s ............... 33
4.1. Classical Yang Baxter equation ......................................................................... 34
4.2. Classification of finite dimensional subalgebras of the Witt and Virasoro
algebras ..................................................................................................................... 38
4.3. The Lie bialgebra structures on W \ .................................................................. 40
4.4. Some cohomology results .................................................................................. 41
4.5. Proof of Main R e su lts ......................................................................................... 47
v
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
5. Lie bialgebra structures of the saturated Lie subalgebras of the W itt
a lg eb ra ....................................................................................................................................... 50
5.1. Saturated subalgebras of the Witt alg eb ra ...................................................... 50
5.2. Calculations of the cohomology group L(I) A L{I)) .................... 52
5.3. Lie bialgebra structures on the saturated Lie subalgebras of W ............. 55
6. Uniqueness of the Taft Lie Bialgebras In Characteristic p .................... 57
6.1. Uniqueness for the case i = 0 (m odp) ................................................................ 57
6.2. Uniqueness for the case i « 0 (m odp) ................................................................ 63
R eferences ................................................................................................................................ 72
V ita .............................................................................................................................................. 75
vi
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.