The IGBT Device: Physics, Design and Applications of the Insulated Gate Bipolar Transistor

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

The IGBT Device: Physics, Design and Applications of the Insulated Gate Bipolar Transistor, Second Edition provides the essential information needed by applications engineers to design new products using the device in sectors including consumer, industrial, lighting, transportation, medical and renewable energy. The IGBT device has proven to be a highly important Power Semiconductor, providing the basis for adjustable speed motor drives (used in air conditioning and refrigeration and railway locomotives), electronic ignition systems for gasoline powered motor vehicles and energy-saving compact fluorescent light bulbs.

The book presents recent applications in plasma displays (flat-screen TVs) and electric power transmission systems, alternative energy systems and energy storage, but it is also used in all renewable energy generation systems, including solar and wind power. This book is the first available on the applications of the IGBT. It will unlock IGBT for a new generation of engineering applications, making it essential reading for a wide audience of electrical and design engineers, as well as an important publication for semiconductor specialists.

Author(s): B. Jayant Baliga
Edition: 2
Publisher: Elsevier
Year: 2022

Language: English
Pages: 800
City: Amsterdam

Front Cover
The IGBT Device: Physics, Design and Applications of the Insulated Gate Bipolar Transistor
Copyright
Dedication
Contents
About the Author
Foreword
Preface to the Second Edition
Preface to the First Edition
Chapter 1: Introduction
1.1. IGBT Applications Spectrum
1.2. Basic IGBT Device Structures
1.3. IGBT Development and Commercialization History
1.4. Scaling of Power Ratings
1.5. Summary
References
Chapter 2: IGBT Structure and Operation
2.1. Symmetric D-MOS Structure
2.2. Asymmetric D-MOS Structure
2.3. Trench-Gate IGBT Structure
2.4. Transparent Emitter IGBT Structure
2.5. Novel IGBT Structures
2.6. Lateral IGBT Structures
2.7. Complementary IGBT Structures
2.8. Advanced IGBT Structures
2.9. Summary
References
Chapter 3: IGBT Structural Design
3.1. Threshold Voltage
3.2. Symmetric IGBT Structure
3.2.1. Blocking Voltage
3.2.2. On-State Characteristics
3.2.3. Stored Charge
3.2.4. Turn-Off Switching Waveforms
3.2.5. Turn-Off Power Loss
3.2.6. Power Loss Trade-Off Curve
3.3. Asymmetric IGBT Structure
3.3.1. Blocking Voltage
3.3.2. On-State Characteristics
3.3.3. Stored Charge
3.3.4. Turn-Off Switching Waveforms
3.3.5. Turn-Off Power Loss
3.3.6. Power Loss Trade-Off Curve
3.4. Transparent Emitter IGBT Structure
3.4.1. Blocking Voltage
3.4.2. On-State Characteristics
3.4.3. Stored Charge
3.4.4. Turn-Off Switching Waveforms
3.4.5. Turn-Off Power Loss
3.4.6. Power Loss Trade-Off Curve
3.5. Silicon Carbide IGBT Structures
3.5.1. N-Channel Asymmetric SiC IGBT Structure
3.5.2. Blocking Characteristics
3.5.3. On-State Voltage Drop
3.5.4. Turn-Off Characteristics
3.5.5. Switching Energy Loss per Cycle
3.6. Optimum SiC Asymmetric IGBT Structure
3.6.1. Optimum Structure Design
3.6.2. On-State Voltage Drop
3.6.3. Turn-Off Characteristics
3.6.4. Power Loss Trade-Off Curves
3.6.5. Maximum Operating Frequency
3.7. Summary
References
Chapter 4: Safe Operating Area Design
4.1. Parasitic Thyristor
4.2. Suppressing the Parasitic Thyristor
4.2.1. Deep P+ Diffusion
4.2.2. Reducing Gate Oxide Thickness
4.2.3. Diverter Structure
4.2.4. Cell Topology
4.2.4.1. Square window in a square array
4.2.4.2. Circular window in a hexagonal array
4.2.4.3. Atomic lattice layout
4.2.5. Latch-Up Proof Structure
4.3. Safe Operating Area
4.3.1. Forward-Biased SOA
4.3.2. Reverse Biased SOA
4.3.3. Short Circuit SOA
4.4. Novel Silicon Device Structures
4.5. Silicon Carbide Devices
4.6. Summary
References
Chapter 5: Chip Design, Protection, and Fabrication
5.1. Active Area
5.2. Gate Pad Design
5.3. Edge Termination Design
5.4. Integrated Sensors
5.4.1. Overcurrent Protection
5.4.2. Overvoltage Protection
5.4.3. Overtemperature Protection
5.5. Planar-Gate Device Fabrication Process
5.6. Trench-Gate Device Fabrication Process
5.7. Lifetime Control
5.8. Summary
References
Chapter 6: Package and Module Design
6.1. Discrete Device Package
6.2. Improved Discrete Device Package
6.3. Basic Power Module
6.4. Flat-Pack Power Module
6.5. Metal Baseplate Free Power Module
6.6. Smart Power Modules
6.6.1. Dual In-Line Packages
6.6.2. Intelligent Power Modules
6.7. Reliability
6.8. Summary
References
Chapter 7: Gate Drive Circuit Design
7.1. Basic Gate Drive
7.2. Asymmetric Gate Drive
7.3. Two-Stage Gate Drive
7.4. Active Gate Voltage Control
7.5. Variable Gate Resistance Drive
7.6. Digital Gate Drive
7.7. Short Circuit Protection
7.8. Magnetically Coupled Gate Drive
7.9. Posicast Gate Drive
7.10. EMI Reduction Gate Drive
7.11. The BaSIC Topology
7.12. Summary
References
Chapter 8: IGBT Circuit Models
8.1. Physics-Based Circuit Model
8.1.1. SABER NPT-IGBT Circuit Model
8.1.2. SABER PT-IGBT Circuit Model
8.1.3. SABER IGBT Electrothermal Circuit Model
8.1.4. SABER IGBT1 Model
8.2. IGBT Analog Behavioral Model
8.3. Model Parameter Extraction
8.4. Summary
References
Chapter 9: IGBT Applications: Transportation
9.1. Gasoline-Powered Vehicles
9.1.1. Kettering Mechanical Ignition System
9.1.2. Electronic Ignition System
9.1.3. Ignition IGBT Design
9.1.4. Dual-Voltage Clamped Ignition IGBT Design
9.1.5. Smart Ignition IGBT Design
9.1.6. Ignition IGBT Products
9.2. Auxiliary Automotive Drives
9.3. Electric and Hybrid Electric Vehicles
9.3.1. EV Inverter Design
9.3.2. EV IGBT Chip Design
9.3.3. EV Regenerative Breaking
9.4. EV Charging Stations
9.4.1. EV Charging Requirements
9.4.2. EV Charging Circuit
9.4.3. Modern EV Charging Station
9.5. Electric Transit Bus
9.5.1. Electric Bus Control Circuits
9.5.2. Electric Bus Charging
9.5.3. Inductive Electric Bus Charging
9.6. Electric Trams and Trolleys
9.7. Subway and Airport Trains
9.8. Electric Locomotives
9.8.1. DC Power Bus
9.8.2. AC Power Bus
9.8.3. Multisystem Electric Trains
9.9. Diesel-Electric Locomotives
9.10. High-Speed Electric Trains
9.10.1. Motor Drive Topology
9.10.2. IGBT Module Design
9.11. Freight Trains
9.12. Marine Propulsion
9.12.1. Ro-Ro Ships
9.12.2. Cruise Ships
9.12.3. LNG Carriers
9.12.4. Circuit Breakers for Ships
9.13. More Electric Aircraft
9.13.1. DC-DC Converter
9.13.2. DC-AC Inverter
9.13.3. Electromechanical Aircraft Rudder Actuator
9.13.4. Brushless DC Motor Drives
9.14. All-Electric Aircraft
9.14.1. Civil Tilt Rotorcraft
9.14.2. ANPC Inverter Drive
9.14.3. Passenger Drones
9.15. IGBT Modules for Aircraft Applications
9.16. IGBT Cosmic Ray Failures
9.17. Summary
References
Chapter 10: IGBT Applications: Industrial
10.1. Industrial Motor Drives
10.2. Adjustable Speed Drives for Motor Control
10.3. Pulse Width Modulated ASD
10.3.1. PWM Waveforms
10.3.2. Power Loss Trade-Off Curves
10.3.3. Power Loss Analysis
10.4. Factory Automation
10.4.1. Complementary IGBTs
10.4.2. p-Channel IGBT Design
10.5. Robotics
10.5.1. Cableless Power Supply
10.5.2. Industrial Robot Controller
10.5.3. Linear Actuators
10.5.4. Mobile Gantry Crane Robots
10.6. Welding
10.6.1. Step-Down Buck Converter
10.6.2. Transformer-Coupled Power Supply
10.6.3. Dual Utility Power Supply
10.6.4. Robot Arc Welding
10.6.5. Consumable Electrode Welding
10.6.6. IGBT Optimization for Welding
10.7. Induction Heating
10.7.1. Forging, Annealing, and Tube/Pipe Welding
10.7.2. Fluid Heating
10.7.3. Metal Melting Furnace
10.7.4. IGBT Design for Induction Heating
10.8. Milling and Drilling Machines
10.8.1. High-Speed Milling Machine
10.8.2. High-Speed Drilling Machine
10.8.3. High-Speed Electrical Discharge Machining
10.9. Metal and Paper Mills
10.9.1. Metals Industries
10.9.2. Pulp and Paper Industries
10.10. Electrostatic Precipitators
10.11. Textile Mills
10.12. Mining and Excavation
10.13. IGBT Optimization for Industrial Applications
10.14. Low Power IPM
10.15. Dead-Time Compensation
10.16. Hybrid Si IGBT/SiC MOSFET Switches
10.17. Summary
References
Chapter 11: IGBT Applications: Lighting
11.1. TRIAD Incandescent Lamps
11.2. Compact Fluorescent Lamps
11.2.1. CFL Light Emission
11.2.2. Half-Bridge Ballast Topology
11.2.3. Power Transistor Comparison
11.2.4. Self-Resonant Ballast Topology
11.2.5. Power Factor Correction
11.2.6. Discrete IGBT Designs for CFLs
11.2.7. Integrated IGBT Designs for CFLs
11.3. Light-Emitting Diodes
11.3.1. LED Driver
11.3.2. Conventional LED Driver
11.3.3. Multiple Series/Parallel LED Driver
11.3.4. Conducted EMI
11.4. Strobe Flash Light
11.4.1. Strobe Flash Circuit
11.4.2. IGBT Design for Strobe Light
11.4.3. Professional Flash
11.5. Xenon Short Arc Lamps
11.5.1. Automobile Headlights
11.5.2. Movie Theater Projectors
11.6. Stroboscopic Imaging
11.7. Dimmable Luminaries
11.8. Rapid Thermal Annealing
11.9. LED-Based Endoscopy
11.10. Summary
References
Chapter 12: IGBT Applications: Consumer
12.1. Large Appliances
12.1.1. Air Conditioners (Heat Pumps)
12.1.2. Refrigerators
12.1.3. Washing Machine
12.1.4. Microwave Oven
12.1.5. Induction Cooktop Range
12.1.6. Dishwasher
12.2. Small Appliances
12.2.1. Portable Induction Cooktop and Rice Cooker
12.2.2. Food Processors (Blenders, Juice Makers, Mixers)
12.2.3. Vacuum Cleaners
12.3. Television
12.3.1. TV Sets With CRTs
12.3.2. Plasma TV Sets
12.3.3. Preregulator Circuit
12.4. IGBT Design Optimization for Consumer Applications
12.4.1. IGBT Optimization for Motor Drives
12.4.2. IGBT Optimization for Induction Cooking
12.4.3. IGBT Optimization for TV Sets
12.4.4. IGBT Optimization for Power Factor Correction
12.5. Summary
References
Chapter 13: IGBT Applications: Medical
13.1. X-Ray Machine
13.1.1. Series-Parallel Resonant Power Supply
13.1.2. Dual-Mode Power Supply
13.2. Computed Tomography
13.2.1. PWM-Resonant Converter Power Supply
13.2.2. Resonant Inverter Power Supply in Rotating Gantry
13.2.3. Resonant Inverter Power Supply in Stationary Gantry
13.3. Magnetic Resonance Imaging
13.3.1. Two-Paralleled Four-Quadrant DC Chopper Power Amplifier
13.3.2. Four-Paralleled Full-Bridge Power Amplifier
13.3.3. Stacked Three-Bridge Power Amplifier
13.3.4. Multioutput Phase-Shifted Power Amplifier
13.3.5. Series Voltage Compensated Power Supply
13.3.6. Supercapacitor Energy Storage Power Supply
13.4. Medical Ultrasonography
13.4.1. Ultrasonography Principles
13.4.2. Pulsed Power Supply
13.5. Defibrillators
13.5.1. Automatic External Defibrillators
13.5.2. Energy Generation and Pulse Forming in AEDs
13.5.3. Implantable Cardioverter Defibrillator
13.5.4. Cardioverter Defibrillator for Surgery
13.6. Medical Synchrotron
13.6.1. CNAO Magnet Coil Power Supply
13.6.2. GUNMA Magnet Coil Power Supply
13.7. Medical Lasers
13.7.1. Pulse Compression Network Power Supply
13.7.2. Capacitor Discharge Power Supply
13.7.3. Series-Parallel Transformer Power Supply
13.8. Sterilization and Disinfection
13.9. IGBT Design for Medical Applications
13.10. Summary
References
Chapter 14: IGBT Applications: Defense
14.1. Power Electronic Building Blocks
14.1.1. PEBB-1, PEBB-2, and PEBB-3
14.1.2. Naval Frequency Changers
14.1.3. Shunt Active Power Filter
14.1.4. Three-Level ANPC-VSC PEBB
14.1.5. PEBB for More-Electric Aircraft
14.2. The Electric Warship
14.2.1. Propulsion Drive Options
14.2.2. Naval Shipboard Power Distribution
14.2.3. Solid-State Transfer Switch
14.2.4. Solid-State Circuit Breakers
14.2.5. Direct Conversion System
14.2.6. Hybrid ANPC H-Bridge System
14.3. Aircraft Carriers
14.3.1. Railgun Projectile Launcher
14.3.2. Aircraft Launchers
14.4. Nuclear and Diesel-Electric Submarines
14.4.1. Quiet Electric Drive
14.4.2. IGBT Power Cycling
14.5. Army Vehicles
14.5.1. Bidirectional DC-DC Converter
14.6. Air Force Jets
14.6.1. Electrical Power Distribution Architecture
14.6.2. Portable Railgun
14.7. Missile Defense
14.7.1. Radar Transmitter
14.7.2. Klystron Radar Power Supply
14.7.3. Doppler Radar Pulse Power Supply
14.7.4. Agile Mirror Radar
14.7.5. Ground-Based Radar for Theater Missile Defense
14.8. IGBTs for Defense Applications
14.8.1. Pulse Power Capability
14.8.2. Reliability
14.9. Summary
References
Chapter 15: IGBT Applications: Renewable Energy
15.1. Hydroelectric Power
15.1.1. Large Power Plants
15.1.2. Small Power Plants
15.1.3. Decoupled Voltage and Frequency Controller
15.1.4. Auxiliary Generation Units
15.2. Photovoltaic Power
15.2.1. PV Inverter Topologies
15.2.2. HERIC PV Inverter
15.2.3. Three-Phase PV Inverter
15.2.4. Nonisolated Interactive PV Inverter
15.2.5. Nonisolated Buck-Boost PV Inverter
15.2.6. Maximum Power Point Tracking Circuit for PV Inverter
15.2.7. Current Source PV Inverter
15.2.8. Three-Phase Current Source PV Inverter
15.2.9. Commercial PV Converter
15.2.10. NPC2 Topology for Solar Farm
15.2.11. Dual-Source Multilevel Inverter for Residential Solar Power
15.2.12. PV Energy Storage
15.2.13. IGBTs for PV Applications
15.3. Wind Power
15.3.1. Wind Power Generator Configurations
15.3.2. Basic Converter Topology
15.3.3. Off-Shore Wind Power Installations
15.3.4. Chinese off-Shore Wind Power Installation
15.3.5. European off-Shore Wind Power Installation
15.3.6. Standalone Wind Power Installation
15.3.7. STATCOM for Reactive Power Compensation
15.3.8. IGBTs for Wind Power Applications
15.4. Wave Power
15.4.1. Osprey Wave Energy
15.4.2. Wave Dragon Energy
15.4.3. Bolt Buoy Energy
15.4.4. Optimum Damping Strategy
15.4.5. Oscillating Water Column
15.5. Tidal Power
15.6. Geothermal Power
15.6.1. Power Generation Architecture
15.7. Summary
References
Chapter 16: IGBT Applications: Power Transmission
16.1. HVDC Transmission
16.2. HVDC Components
16.3. HVDC Trends
16.3.1. Gratz Bridge
16.3.2. CSC-Based HVDC
16.3.3. Static Synchronous Compensator
16.3.4. Self-Powered IGBT Switch
16.3.5. Hockey-Puck Press-Pack IGBT Design
16.3.6. IGBT Ratings for VSC-HVDC
16.4. AC Power Transmission
16.4.1. Facts
16.4.2. Static VAR Compensator (SVC)
16.4.3. Static Synchronous Compensator
16.4.4. SVC Light
16.4.5. SVC and STATCOM in China
16.4.6. Urban STATCOM Design
16.4.7. STATCOM Stability Analysis
16.5. HVDC Back-to-Back Converter
16.6. Off-Shore Power Transmission
16.6.1. Oil Rig Power Transmission
16.6.2. Wind Farm Power Transmission
16.7. Premium Quality Power Park
16.8. IGBT Designs for Power Transmission
16.9. Summary
References
Chapter 17: IGBT Applications: Financial
17.1. Power Quality Equipment
17.2. Power Reliability and Quality
17.3. Dynamic Voltage Restorer
17.4. Uninterruptible Power Supplies
17.4.1. Fuji Electric 200 kVA UPS
17.4.2. Fujikura 10 kVA UPS
17.4.3. Toshiba 500 kVA UPS
17.4.4. Yuasa Corporation 3 kVA UPS
17.4.5. Daikin UPS
17.4.6. Single-Stage UPS Topology
17.4.7. Transformerless 300 kVA UPS
17.4.8. UPS With Static Transfer Switch
17.4.9. Three-Phase Four-Wire Hybrid Frequency Parallel UPS
17.5. Premium Quality Power Park
17.6. IGBT Designs for UPS
17.7. IGBT UPS Failure Modes
17.8. Summary
References
Chapter 18: IGBT Applications: Energy Storage
18.1. Pumped Hydro Energy Storage
18.1.1. Variable Speed Pumped Storage Plant
18.1.2. Voltage Sag Compensation
18.1.3. Stabilizing Wind and Solar Renewable Energy Sources
18.2. Other Energy-Storage Technologies
18.2.1. Mitigating Wind Power Fault Ride Through Using Supercapacitor Storage
18.2.2. Mitigating Solar Power Voltage Fluctuations With Battery Energy Storage
18.2.3. Battery Energy Storage System
18.2.4. Fuzzy Logic Controlled STATCOM
18.3. Data Center Energy Storage
18.3.1. Energy-Storage Options
18.3.2. Distributed Energy Storage
18.3.3. DC Voltage Distribution
18.4. Summary
References
Chapter 19: IGBT Applications: Other
19.1. Smart Home
19.1.1. Smart Socket and Smart Switch
19.1.2. Smart Power Module
19.2. Printing and Copying Machines
19.3. Inductive Power Transfer
19.3.1. Stage Lighting
19.3.2. Embedded Electric Vehicle Chargers
19.4. Airport Security X-Ray Scanners
19.5. Pulse Power
19.5.1. Marx High-Voltage Pulse Generator
19.5.2. Ion Implantation
19.5.3. Cancer Treatment Pulse Generator
19.6. Particle Physics
19.6.1. Stanford Linear Accelerator
19.6.2. International Linear Collider
19.6.3. Fermilab Main Injector
19.6.4. Japan Hadron Facility
19.6.5. CERN Large Hadron Collider
19.6.6. Spallation Neutron Source
19.7. Pulsed Lasers
19.7.1. Power Supply
19.7.2. IGBT Modules
19.8. Food Sterilization
19.9. Water Treatment
19.9.1. Disinfection
19.9.2. Desalination
19.9.3. Sewage Treatment
19.9.4. Fouling of Water Piping
19.9.5. Industrial and Pharmaceutical Pollution
19.10. Oil/Petroleum Extraction
19.10.1. Oil Pipe Heating
19.10.2. Subsea Oil Extraction
19.10.3. Athabasca Oil Sands
19.11. Petrochemical Plant
19.12. Gas Liquefaction
19.13. Superconducting Magnetic Storage
19.14. Fusion Power
19.15. Standby Power Generators
19.16. Roller Coasters
19.17. National Aeronautics and Space Administration
19.17.1. Space Shuttle Main Engine Thrust Control
19.17.2. Space Shuttle Orbital Maneuvering System
19.17.3. Space Shuttle Power Distribution
19.17.4. International Space Station Power Distribution
19.17.5. Manned Interplanetary Missions
19.17.6. Cryogenic Power Electronics
19.17.7. IGBT Failure Analysis
19.18. Summary
References
Chapter 20: IGBT Social Impact
20.1. Electronic Ignition System
20.1.1. Fuel Savings
20.1.2. Consumer Cost Savings
20.1.3. Carbon Dioxide Emission Reduction
20.2. Adjustable-Speed Motor Drives
20.2.1. Electrical Energy Savings
20.2.2. Electricity Cost Savings
20.2.3. Carbon Dioxide Emission Reduction
20.3. Compact Fluorescent Lamps
20.3.1. Electrical Energy Savings
20.3.2. Electricity Cost Savings
20.3.3. Carbon Dioxide Emission Reduction
20.4. Future Social Impact
20.5. Summary
References
Chapter 21: Synopsis
21.1. State-of-the-Art IGBT Products
21.2. Wide Bandgap Semiconductor Power Devices
21.2.1. State-of-the-Art SiC Power MOSFETs
21.2.2. Cost analysis
21.3. Summary
References
Index
Back Cover